Marquette Intellectual Property Law Review

Volume 9 | Issue 2 Article 3

Summer 2005

A Technical Critique of Fifty Software Patents

Martin Campbell-Kelly
Warwick University

Patrick Valduriez
INRIA, National Center for Computer Science in France

Follow this and additional works at: https://scholarship.law.marquette.edu/iplr

6‘ Part of the Intellectual Property Law Commons

Repository Citation

Martin Campbell-Kelly and Patrick Valduriez, A Technical Critique of Fifty Software Patents, 9 Marq.
Intellectual Property L. Rev. 249 (2005).

Available at: https://scholarship.law.marquette.edu/iplr/vol9/iss2/3

This Article is brought to you for free and open access by the Journals at Marquette Law Scholarly Commons. It
has been accepted for inclusion in Marquette Intellectual Property Law Review by an authorized editor of
Marquette Law Scholarly Commons. For more information, please contact elana.olson@marquette.edu.

https://scholarship.law.marquette.edu/iplr
https://scholarship.law.marquette.edu/iplr/vol9
https://scholarship.law.marquette.edu/iplr/vol9/iss2
https://scholarship.law.marquette.edu/iplr/vol9/iss2/3
https://scholarship.law.marquette.edu/iplr?utm_source=scholarship.law.marquette.edu%2Fiplr%2Fvol9%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/896?utm_source=scholarship.law.marquette.edu%2Fiplr%2Fvol9%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elana.olson@marquette.edu

A TECHNICAL CRITIQUE OF FIFTY
SOFTWARE PATENTS

MARTIN CAMPBELL-KELLY* & PATRICK VALDURIEZ**

I. INTRODUCTION

There has been a great deal of discussion on the desirability or
otherwise of software patents in the legal, economic, and technical
academic literature. All of this literature has some limitations that we
seek to overcome in this article.

The legal literature is for the most part based on case law." As a
result, discussions are often highly particular, focusing on the nuanced
interpretation of particular cases as they percolate through the legal
system. An obvious limitation of this literature is that it suffers from the
small sample problem—it is difficult to infer universal lessons from
individual cases. Of course, the legal literature does cover legal
precedents, which give guidance to likely rulings in the future, but the
small sample probiem remains.

The economic literature on patents is typically based on the
statistical analysis of large numbers of patents.’ This overcomes the
small sample problem. The economic literature is particularly useful for
assessing the overall costs and benefits of patents, but the technological

* Martin Campbell-Kelly is a professor in the Department of Computer Science, Warwick
University. He is an historian and computer scientist with a special interest in the history of
information processing. His most recent book is FROM AIRLINE RESERVATIONS TO SONIC
THE HEDGEHOG: A HISTORY OF THE SOFTWARE INDUSTRY (2003).

** Patrick Valduriez is a director of research at INRIA, the national center for computer
science in France, working on data management in distributed systems. His most recent book
is the second edition of PRINCIPLES OF DISTRIBUTED DATABASE SYSTEMS, co-authored
with Tamer Ozsu.

1. See, e.g., ROBERT P. MERGES ET AL., INTELLECTUAL PROPERTY IN THE NEwW
TECHNICAL AGE 855-987 (3d ed., 2003); Jeffrey R. Kuester & Ann K. Moceyunas, Patents
for Software-Related Inventions, 2 ITERATIONS: AN INTERDISC. J. SOFTWARE HIST. 1-14
(2003).

2. See, e.g., JAMES BESSEN & ROBERT M. HUNT, AN EMPIRICAL LOOK AT SOFTWARE
PATENTS, (Fed. Reserve Bank of Phila. Working Paper No. 03-17/R, 2004); Starling Hunter,
Have Business Method Patents Gotten a Bum Rap? Some Empirical Evidence, (Center for
eBusiness@MIT, Paper 182, 2003).

250 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

arguments for or against software patents tend to recede into the
background. : :

The technical literature—frequently hostile to patents—is typically
based on an examination of a small number of pathologically “bad”
patents.” The Amazon.com 1-click patent, for instance, featured in the
recent literature. However, the small sample problem makes it difficult
to draw general conclusions. For example, are these “bad” patents
typical of all patents, or are they simply rogues?

This paper focuses on the technical merits of what, on the surface at
least, should be a set of fifty “good” patents. Our approach has been to
conduct a detailed technical examination of all the patents in the set.
This is a medium-sized sample that we believe is sufficiently large for
some general lessons to be drawn. Our analysis, while technical (written
as it is by a computer scientist and a computer historian), is nonetheless
geared at policy dimensions of the current patent system. In other
words, all of our inquiries focus on what insights technical specialists
might provide lawyers, economists, and policymakers studying software
patents.

We have chosen as our set of “good” patents the fifty most cited
software patents (our precise criteria for inclusion are detailed in the
next section). We believe that these are therefore good patents, in that
they have been sufficiently useful or prominent to attract a large
number of citations. They may even represent a proxy for best practice
in patent applications, at least in a limited sense. We did consider using
a set of randomly chosen patents, but we felt that such a set would offer
no guidance or benchmark, because they would not conform to either
best or worst practice.

We realize that our approach cannot address all of the controversies
about software patents. For example, we have not been able to
comment usefully about the risk of inadvertent infringement. However,
we do think we can make a useful commentary on the following
questions that are frequently discussed in the software-patent literature:

Are software patents too obvious?

Is the level of disclosure adequate?

Are patents “real”-—that is, do they represent real innovations or are
they largely “strategic”?

Are software patents too broad?

3. See, e.g., Richard Stallman & Simson Garfinkle, Viewpoint: Against Software Patents,
35(1) CoMM. OF THE ACM 17-22 (1992); James Gleick, Patently Absurd, N.Y. TIMES MAG.,
Mar. 12, 2000, at 44.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 251

Do software patents last too long?

Is copyright protection also required for software inventions?

These questions are each discussed in turn, below. For this set of
patents, we conclude:

These software patents, in general, are not too obvious.

The level of disclosure is often less than optimal, indicating the need
for reform.

Almost all were issued for real innovations.

Most of the patents are not too broad.

Software patents last too long, but this is not a critical issue.

Some software inventions need both patent and copyright
protection.

I1. SAMPLE SET OF THE FIFTY MOST CITED SOFTWARE PATENTS

A. How the Patents Were Identified

The patents considered in this paper ‘are the product of two patent
datasets. The first is directly from the United States Patent and
Trademark Office (USPTO) and consists of all patents granted from
1976 through 2000 that have the International Patent Classification
(IPC) GO6F." The second dataset is from the National Bureau of
Economic Research (NBER)’ and presents citation data for all patents
from 1963 through 1999. The citation data from NBER was used to
provide a list of all patents that cited the patents from our USPTO
dataset. The list of fifty patents is the combination of two separate
measures of quality.®

The first measure, which makes up forty-one of the top patents, is
based on a raw-count of forward citations, not including forward
citations from an assignee’s own patents.” Forward citations are

4. For information on the IPC, see International Classifications at WIPO, WIPO, ar
http://www.wipo.int/classifications/fulltext/new_ipc/ (last visited Apr. 3, 2005). GO6F covers
“Electric Digital Data Processing.” Id. at http://www.wipo.int/classifications/fulltext/
new_ipc/index.htm. Arguably, this classification can be considered as a proxy for identifying
software patents.

5. See Bronwyn H. Hall, Adam B. Jaffe & Manuel Tratjenberg, The NBER Patent
Citation Data File: Lessons, Insights and Methodological Tools (NBER Working Paper 8498,
2001), available at http:// www.nber.org/patents (last updated Dec. 1, 2003).

6. See infra Appendix B for details on each of the fifty patents.

7. Forward citations were classified as self-citations based on a comparison of
Committee on Uniform Securities Identification Procedures (CUSIP) IDs from the NBER
dataset. The CUSIP to assignee match is based on the universe of companies from 1989. If

252 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

frequently taken as a measure of a patent’s influence on subsequent
innovations.” The second measure, which makes up nine of the top fifty,
is similar to the first, but limited to patents granted in or after 1990 and
non-self-forward citations within three years of the patent grant. There
were two reasons for including these latter patents. First, citations
naturally increase with time, so the older patents would tend to be over-
represented. Second, the more recent patents are more controversial—
they are patents that were issued after the series of court rulings that
opened the door wider to software patents. By limiting the sub-sample
to 1990 and later, we get a contrast with older patents and also include
more of the controversial ones.

The software patents from the USPTO dataset were sorted based on
the two sets of quality criteria listed above. Because the original
criterion for selecting software patents (IPC GO6F) is a somewhat blunt
instrument, there were patents in the dataset that probably should not
be classified as pure software. Individual analysis of the top patents
from each quality criteria resulted in the de-classification of several
(about thirty) patents that were deemed hardware/firmware.’

B. Categorizing the Patents

Similar to research papers in computer science that describe an
invention, a software patent can be anything between very broad, for
example, describe a new graphic user interface system, and very deep,
for example, describe a new programming language optimization
technique. The international patent classification system is useful for
key-word searches of patents but too fine to help the analysis of our
sample of patents from a technical point of view. Therefore, we propose
a simple classification of software patents along two dimensions,

the assignee for the patent receiving or giving the citation had no corresponding CUSIP, the
citation was not classified as a self-citation. This approach slightly over-counts the number of
qualifying forward citations.

8 See, e.g., Adam B. Jaffe & Josh Lerner, Reinventing Public R&D: Patent Policy and
the Commercialization of National Laboratory Technologies, 32 RAND J. ECON. 167 (2001);
Daniel K.N. Johnson & David Popp, Forced Out of the Closet: The Impact of the American
Inventors Protection Act on the Timing of Patent Disclosure, 34 RAND J. ECON. 96 (2003);
Manuel Trajtenberg, A Penny for Your Quotes: Patent Citations and the Value of Innovations,
21 RAND J. ECON. 172 (1990).

9. The boundary between hardware and software is blurry since software cannot be
made fully independent of hardware. For instance, to bootstrap, or “boot,” an operating
system, a processor needs to execute special instructions that are built into the hardware.
Firmware, or microcode, which consists of computer code stored in programmable read-only
memory (ROM), designates such special-purpose software. Thus, firmware patents can mix
hardware and software inventions thereby making their classification and evaluation difficult.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PA TENTS 253

software levels and granularity levels, which we apply to our sample of
patents. Thus, we obtain four “classes” of patents. For each class of
patents, we further group patents by technology such as CAD
(computer-aided design), CASE (computer-aided software
engineering), GUI (graphical user interface), database, middleware, etc.
For each patent, we consider various detailed technical indicators such
as numbers of pages, block diagrams, flowcharts, code skeletons, and
code fragments, which are useful to assess technical depth and
disclosure level.

Software is a generic term that designates data and code that
establish computer processes. Software can be divided in two major
categories: system software that provides the basic application-
independent functions of the computer and application software that
provides application-specific functions. A user can typically use system
or application software functions to perform the desired tasks.

System software provides hardware-independence to system users
and other software so that they are not concerned with low-level details.
It is responsible for controlling and managing the individual hardware
components of a computer system. -Typically, system software
designates an operating system (such as GNU/Linux, Unix or Windows)
that can be further decomposed in an operating system kernel (with
basic functions) and operating system services such as user
authentication, display management, file management, and network
management. Middleware, which provide basic services for the
interoperability of heterogeneous software programs, is also a form of
system software.

Application software runs on top of system software and provides
application-specific functions to users or other independent applications.
Examples of such software are text-processing, spreadsheet, database,
GUI, enterprise resource planning (ERP) applications, or end-user
applications (programmed by those using application or system
software). Interestingly, the use of business components (reusable
elements that implement business concepts or processes), which users
can either buy out or create themselves, makes the boundary between
vendor-supplied packages and user-developed software blurry.

Even with this simple classification, some patents are difficult to
classify between application and system software. For instance,
middleware that provides advanced services such as distributed
transactions can be considered application software.

Software may consist of anything from one program (or component)
to many programs (or components) and a patent can bear on parts of

254 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

that software. To ease analysis, we consider only two granularity levels'
for software patents: fine-grain (one to a few components) and large-
grain (several to many components). For instance, a technique to
optimize programming language or an image viewer is fine-grain while
an application suite (such as Microsoft Office or Star Office) or a
document management system is large-grain. Fine-grain patents are
likely to describe a particular technique for a specific problem and
involve data structures and associated code. Large-grain patents are
broader and can describe an entire system. They primarily involve
interfaces and possibly data structures and code, but perhaps not at a
very deep level of detail.

Table 1 in Appendix A gives our classification of our sample set of
the fifty most cited patents. For each combination of
software/granularity level, we further classify patents by technology.
Then for each technology, we list each patent by the assignee company
in decreasing order of number of citations. Note that some patents have
not been filed on behalf of a company, in which case we simply mention
the inventor’s name with the indication “ind.” for individual.

Distinguishing between application and system software patents was
sometimes difficult. For instance, most of the patents in
communication, multimedia, and security technologies include elements
that are system software (or even have some hardware design for the
multimedia patents). This is the case for IBM’s 5,333,266 patent," but a
detailed analysis reveals that many elements are application-specific, in
particular, to deal with specific media types.

Our classification clearly shows that the vast majority of patents in
our sample set are in application software (thirty-nine patents) rather
than in system software. And most of these (thirty-seven) are large-
grain. It is noticeable that the highest numbers of patents are in GUI
(ten patents) and database management (eight patents), which .
corresponds to the impact of object-oriented programming on these
technologies. Large-grain patents are broad and focus on interfaces

10. Initially, we started with three levels, small-grain, medium-grain, and large-grain, but
when applied to our sample set, it turned out that the difference between medium-grain and
large-grain was quite arbitrary, the difference dependant upon the software technology. For
instance, the same software could be classified as medium-grain if described using modules or
large-grain if described using object classes.

11. This patent is classified as GO6F 13/00: “Interconnection of, or transfer of
information or other signals between, memories, input/output devices[,] or central processing
units.” International Classifications, supra note 4, at http://'www.wipo.int/classifications/
fulltext/new_ipc/index.htm.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 255

between components rather than on component implementation details.
By contrast, fine-grain system software patents focus on implementation
details.

A more detailed technical analysis of the patent dataset is given in
Appendix B.

III. ARE SOFTWARE PATENTS TOO OBVIOUS?

Much of the criticism about software patents focuses on examples
that are perceived to be trivial by programming professionals. The
Amazon.com 1-click patent perhaps gets more attention than any other
in this regard, but about a dozen patents are commonly cited.”
However, although these patents are cited in order to condemn software
patents in general, in reality they represent an infinitesimal fraction of
the one hundred thousand-plus software patents that have been issued.
In this section, we will examine our set of patents from the perspective
of a software practitioner to see if they suffer from the same weaknesses
as those characterized as trivial by critics of software patents.

One reason for the debate over obviousness is the common
misconception about the level of originality that is necessary for a patent
to be granted. People’s expectation of inventiveness is distorted by
famous patents such as Edison’s for the incandescent light bulb® or Ted
Hoff’s for the first microprocessor.”* Such “foundation” patents are very
rare. The fact is that the great majority of patents are issued for small
incremental improvements of existing technology. The vast majority of
patents are obtained by research workers simply doing their job, making
incremental improvements.

The distinguished economist, Richard Nelson, has observed that
software development shares characteristics with the typical industrial
research and development that traditionally receives patent protection:

Most industrial design and development work, like software

creation, involves professionals putting in effort, skill, and often

some creativity, but it generally does not result in a design that
professionals would regard as “non-obvious.” In my opinion,
many of the patents granted in industrial research and
development are on “inventions” that result from professionals
doing their jobs in ways that other professionals would if

12. See Stallman & Garfinkle, supra note 3, at 18. For a rejoinder see Paul Heckel,
Debunking the Software Patent Myths, 35 COMM. OF THE ACM 121 (1992).

13. U.S. Patent No. 223,898 (issued Jan. 27, 1880).

14. U.S. Patent No. 3,821,715 (issued June 28, 1974).

256 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

assigned the same task. Since software development does not

differ significantly in this regard from much of industrial research

and development, then if patents are appropriate for many of the
modest routine advances of the latter, they may not be
inappropriate on this count alone for protecting the former."

Thus—to borrow from Edison—the patent system rewards
“perspiration as well as inspiration.”*

Much invention is simply the systematic searching for a solution to a
problem. One of the most famous examples is Edison’s search for a
filament for his light bulb. He and a team of assistants spent two years
trying out hundreds of different substances for a suitable filament,
eventually settling on carbonized bamboo that combined acceptable
light output with acceptable longevity.” Christopher Latham Sholes, the
inventor of the typewriter, spent five years and built fifty prototypes
before settling on the design that became the Remington typewriter."
The same process occurs in the invention of new drugs, where the
laborious process of searching for candidate therapies is additionally
followed by a long and expensive process of regulatory approval.

The process of software invention is similar; programmers who have
a problem to solve search for a solution, systematically or
serendipitously. ~ Software is an unusual technology in that it is
extremely malleable, so that it is possible for a programmer to generate
and discard candidate solutions to a problem very quickly. This rapidity
of prototyping makes software development seem superficially easy, but
the process is not fundamentally different to other technologies.

A well-documented example of the rapid development of candidate
solutions is the spreadsheet. In 1978, the inventors Dan Bricklin and
Bob Frankston spent just a few months systematically tweaking and
refining a crude prototype into VisiCalc.” They perfected the menu

15. Richard R. Nelson, Intellectual Property Protection for Cumulative Systems
Technology, 94 COLUM. L. REV. 2674, 2675 (1994). Nelson, no fan of the patent system,
continued: “On the other hand, one could argue that patents granted on inventions coming
from industrial research and development that do not meet the ‘nonobviousness’ standard
should not have been granted.” Id.

16. John A. Gibby, Software Patent Developments: A Programmer’s Perspective, 23
RUTGERS COMPUTER & TECH. L.J. 293, 352 (1997) (quoting Arthur R. Miller & Michael H.
Davis, INTELLECTUAL PROPERTY IN A NUTSHELL: PATENTS, TRADEMARKS AND
COPYRIGHT 84 (1990)).

17. PAUL ISRAEL, EDISON: A LIFE OF INVENTION 196-97 (1998).

18. BRUCE BLIVEN, JR., THE WONDERFUL WRITING MACHINE 48 (1954).

19. Interview by Martin Campbell-Kelly with Dan Bricklin & Bob Frankston (May 6,
2004) (transcript forthcoming at Oral Histories, Charles Babbage Institute, ar

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 257

structure, the on-screen presentation of data, and the tightly coupled
interaction between user and machine.” Given the idea of a
computerized spreadsheet, most competent programmers would
eventually have come up with a competent solution. It is in this light
that obviousness needs to be assessed.

Because software progress is cumulative, it may be hard to evaluate
the degree of innovation (or obviousness) of a patent by itself and with
respect to the state-of-the-art (i.e., other patents or published papers).
Although this has been the subject of much debate, this issue is much
the same as in academic research in computer science when papers are
selected for publication in journals and conferences after peer review
based on a combination of criteria such as originality, significance,
technical soundness, etc. However, we observe that there are many
more papers produced in computer science today than ever. To cope
with increasing numbers of paper submissions (and thus potential
inventions), the peer review process in computer science has become
quite selective and rigorous. An interesting issue is distinguishing
between “breakthrough” papers that propose a very novel idea but with
minimal detail and validation, and “delta” papers that propose a slight
improvement over a known technique in great detail and extensive
evidence of superiority. A good example of a breakthrough paper is
Edgar F. Codd’s presenting the relational data model in 1970, then an
IBM researcher.” This ten-page paper gave database management a
mathematical foundation that revolutionized the entire database
industry® It took about ten years of intensive research, mostly
disseminated in fundamental papers and delta papers, and development
to produce the first relational database management system (DBMS)

http://www.cbi.umn.edu/collections/oralhistories.html (last updated July 8, 2003). VisiCalc
was the first computer spreadsheet. See VisiCalc at http://www.bricklin.com/visicalc.htm (last
visited Apr. 3, 2005).

20. Bricklin and Frankston wanted to patent VisiCalc, but software patents were then
not routinely granted and they were advised that an application was unlikely to be successful.
See Martin Campbell-Kelly, The Rise and Rise of the Spreadsheet, in FROM SUMER TO
SPREADSHEETS: THE HISTORY OF MATHEMATICAL TABLES 322 (Martin Campbell-Kelly et
al. eds., 2003).

21. Edgar F. Codd, A Relational Model of Data for Large Shared Data Banks, 13 COMM.
OF THE ACM 377 (1970). In 1981, Dr. Codd received the A.M. Turing Award for his
invention of the relational model. See A.M Turing Award, Association for Computing
Machinery, at http://www.acm.org/awards/taward.htm} (last updated Feb. 16, 2005). In the
field of computer science, the Turing Award is equivalent to the Nobel Prize.

22. David Mindell, The Rise of Relational Databases, in FUNDING A REVOLUTION:
GOVERNMENT SUPPORT FOR COMPUTING RESEARCH 159 (National Research Council ed.,
1999).

258 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

products such as Oracle and IBM DB2. This ten-year period is
interesting because it corresponds to the same period the major
database research conferences used when granting awards for the most
influential inventions.” It took another ten years to improve the
relational technology and the products, mostly through delta papers that
improved the initial inventions.

Depending on how software patents are written, we may be able to
apply a similar reviewing process and distinguish between foundation
patents and incremental patents. The intense synergy between
academic research and industry research, as evidenced by the strong
participation (as program committee members, authors and
participants) of researchers of major computer companies in computer
science conferences, should ease this.

A significant finding is that all patents in our set are incremental.
On average, each refers to .about ten previous patents. Most of the
patents also refer to published research papers and books, from which
the inventors exploited theoretical results from academic research.
However, some patents are less incremental than others are. For
instance, the most-cited patent™ in our sample set describes a software-
version-management system for enabling the automatic recompiling of
updated versions of component software objects over a computer
network. This patent was very novel; it referred to only one previous
patent and several papers and books on source-code-version
management. On the other hand, another patent” refers to forty
previous patents and many technical papers on electronic fund transfer.

Only two patents in our set could be considered technically obvious.
The first describes a system to assist a user in purchasing goods or
services sold by several vendors.” The system consists of several
application programs that access a database containing information
about different products and/or services. The system also provides the
user with an interface to interact with the database and help refine the

23. For example, conferences organized by the ACM Special Interest Group on
Management of Data (SIGMOD), see SIGMOD Conferences, ACM SIGMOD Online, at
http://www sigmod.org/sigmod/conferences/index.html (last visited Apr. 3, 2005) or the Very
Large Databases (VLDB) Endowment, see Very Large Data Bases (VLDB) Conference,
VDLB, at http://www.vldb.org/dblp/db/conf/vidb/index.html (last updated Mar. 2, 2005).

24. US. Patent No. 4,558,413 (issued Dec. 10, 1985). The patent is assigned to Xerox
Corporation.

25. U.S. Patent No. 5,220,501 (issued June 15, 1993). The patent is assigned to Online
Resources.

26. U.S. Patent No. 4,992,940 (issued Feb. 12, 1991). The patent is assigned to H-Renee,
Inc.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS = 259

searching of products. Finally, after the user has selected one or more
items for immediate purchase, the system automatically transmits the
order to the appropriate vendor. For prior art, the patent refers to four
previous patents and one research paper.

From a technical point of view, this patent is relatively obvious being
merely a straightforward purchasing application that uses a database. It
is, however, less obvious than the Amazon 1-Click patent, which is not
considered particularly obvious by everyone.” Indeed, Tim O’Reilly,
founder of O’Reilly & Associates, the technical publisher who famously
spearheaded a campaign against the 1-Click patent, eventually
conceded, “that Amazon’s patents might actually hold more water as
original inventions than I thought.”® O’Reilly still thought Amazon’s
patents were “a bad idea,” but not, presumably, on the grounds of
obviousness or triviality.

The second technically trivial patent describes a method for
browsing the Web using an HTML browser.” While the client waits for
a reply or as the document is being downloaded, the browser displays a
“mini-Web page” with informational messages to the user, e.g,
advertisements, notices, messages, or copyright information. Such
information is added as comments attached to the links and thus ignored
by the browser when displaying the document. However, the idea of
embedding information in HTML comments is obvious and has been
already used in other document description languages.

IV. IS THE DEGREE OF DISCLOSURE ADEQUATE?

A patent is a bargain between society and the inventor. In exchange
for a temporary monopoly, the inventor discloses the invention. The
purpose of this disclosure is two-fold. First, it enables other firms or
individuals to make use of the invention when the patent has expired.
Second, it enables competitors to see the patented invention, so that

27. See P. Michael Nugent, Financial Business Method Patents—Nothing New under the
Sun, in COPY FIGHTS: THE FUTURE OF INTELLECTUAL PROPERTY IN THE INFORMATION
AGE 229, 232 (Adam Thierer & Clyde Wayne Crews, Jr. eds., 2002); Ron Laurie & Robert
Beyers, The Patentability of Internet Business Methods: A Systematic Approach to Evaluating
Obviousness, in COPY FIGHTS: THE FUTURE OF INTELLECTUAL PROPERTY IN THE
INFORMATION AGE 237, 257-58.

28. Tim O’Reilly, Amazon’s Patent Reform Proposal, O'Reilly Network, at
http://www.oreillynet.com/pub/a/oreilly/ask_tirn/ZOOO/patent_reform_OSOO.html (last visited
Apr. 3, 2005). See also, Tim O’Reilly, The Internet Patent Land Grab, 43 COMM. OF THE
ACM 29 (2000), available at http://tim.oreilly.com/articles/cacm3.html (summarizing
subsequent research by O’Reilly regarding the Amazon 1-Click patent debate).

29. U.S. Patent No. 5,572,643 (issued Nov. 5, 1996).

260 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

they can seek to improve on the invention or invent around it; in either
case, society will benefit from the evolution of an improved product.

It is a requirement of the Patent Act that the disclosure should
encapsulate the “best mode” of realizing the invention, and that this
realization should be possible without “undue experimentation.” In
determining whether these requirements have been met, the concept of
the “person having ordinary skill in the art,” sometimes known by the
acronym, “PHOSITA,” is invoked.” 1In the case of a software patent,
this is understood to mean a time-served journeyman programmer,
neither a rank amateur nor a programmer of exceptional skill.*

Clearly, software patents that include the full source code of an
invention are likely to fulfill the disclosure requirement. However,
disclosure in the form of a high-level functional specification, block
diagrams, or flowcharts might require a great deal of work or
~ experimentation. For this reason, it has been argued that the disclosure
of source code should be mandatory.® Apart from the impracticality of
appending one-million lines of source code to a patent, this would in fact
represent a degree of disclosure far beyond the norm for other kinds of
patents.

In order to gain an insight into what might be an appropriate degree
of disclosure in software patents, let us consider a patent for a much
older information technology, the classic Underwood typewriter that
became the dominant design for the machine-writing industry in the
early years of the last century. The inventor in this 1896 patent “Type
Writing Machine” was Franz X. Wagner, who assigned it to the
Underwood Corporation.” Implicit in the disclosure in the patent was
the fact that several hundred typewriter patents already existed, with
thirty firms in the typewriter industry, and writing machines were mass-
produced items. Hence, the implicit capabilities of the PHOSITA were
not those of an amateur with a home workshop, but those of an
experienced practitioner in the industry.

30. Lawrence D. Graham & Richard O. Zerbe, Jr., Economically Efficient Treatment of
Computer Software: Reverse Engineering, Protection, and Disclosure, 22 RUTGERS
COMPUTER & TECH. L.J. 61, 96 (1994) (citing 35 U.S.C. § 112 (1994)).

31. For the etymology of PHOSITA, see Dan L. Burk & Mark A. Lemley, Is Patent Law
Technology-Specific?, 17 BERKELEY TECH. L.J. 1155, 1185-86 & n.126 (2002).

32. Seeid. at 188.

33. Graham & Zerbe, supra note 30, at 138.

34. U.S. Patent No. 559,345 (issued Apr. 28, 1896). For an in-depth discussion of the
patent history of typewriters, see Martin Campbell-Kelly, Not All Bad: A Historical
Perspective on Software Patents, 12 MiCH. TELECOMM. & TECH. L. REV. (forthcoming 2005).

2005} A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 261

An examination of the Wagner patent shows that it contains a
detailed functional description of the typewriter, which includes sixteen
drawings over six pages and a five-page technical narrative of the
operation of its working parts. Hence, the reader of the patent would
certainly be able to clearly understand how the typewriter worked and
appraise all of its constituent parts. However, for three reasons it would
be a very long step to the best-mode recreation of the machine.

First, the patent does not contain remotely sufficient technical data
to go into production without a great deal of experimentation.
Although the drawings convey the functionality of the typewriter, they
are not in any sense the machine drawings that would be needed to
manufacture the article; for example, there are no linear or radial
dimensions, and not every component is clearly illustrated. Second,
many details cannot be easily communicated in a machine drawing, for
instance, the type of metal used in levers and type bars and the tension
of springs. It is true that some of these desiderata could be determined
by disassembling an actual typewriter, but such reverse engineering is
not a presumption of granting a patent. Third, there is an implicit need
for sophisticated assembly techniques. A typewriter cannot simply be
assembled from of a bundle of parts like a child’s constructor set;
specialized jigs are needed to hold the dozens of type bars in place, to
align the type, and adjust spring tensions.”

Therefore, in the case of the typewriter, there was no effortless route
leading from the patent to the artifact. Specialized tools and a degree of
experimentation were both necessary. Nonetheless, the level of
disclosure conformed to the contemporary norms of the Patent Office
and the typewriter industry. Those who advocate that a software patent
should include a listing of source code are in fact advocating a disclosure
requirement much greater than for other patents.” If the source code
for a word processing program, the modern equivalent of a typewriter,
was wholly disclosed, then it would be possible for an individual to go
from patent to artifact with less than ordinary skill in the art and without
any experimentation or specialized equipment.

The optimal level of disclosure in a software patent can vary from a
high-level architectural description, through block diagrams and

35. If the reader doubts this, try taking apart a typewriter and putting it back together
again! For a discussion of typewriter manufacture, see DONALD R. HOKE, INGENIOUS
YANKEES: THE RISE OF THE AMERICAN SYSTEM OF MANUFACTURES IN THE PRIVATE
SECTOR 132-78 (1990).

36. Thomas P. Burke, Software Patent Protection: Debugging the Current System, 69
NOTRE DAME L. REV. 1115, 1158 (1994).

262 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

flowcharts, to source code. Different software inventions call for
different forms of disclosure.. For example, a one-million-line word
processing program would probably be unintelligible if it was disclosed
only through source code; it would be more effectively described in
terms of a high-level architecture with block diagrams and flowcharts for
its detailed features. However, in a fine-grained software component—
such as data compression algorithm—the source code would be its
essence and it should therefore be included to disclose fully the
invention.

It would also seem reasonable to assume that the PHOSITA for a
software invention is something more than an amateur programmer
equipped with nothing more than a PC and an Internet connection. A
time-served, journeyman programmer wanting to reproduce the
invention would likely have access to computer-aided software
engineering (CASE) tools of the kind used in industry. These expensive
and powerful tools provide facilities for writing software from a
specification, complementary code libraries, and the means for
experimental testing and code integration.

Good indicators of disclosure level of a software patent are its page
length, the number of figures, block diagrams, flowcharts, and tables,
and appendices (not included in the page count). A high number of
pages typically suggests a detailed description, but it may also suggest
that the technical breadth of the patent is wide (for example, a DBMS
kernel). However, a low number of pages may be enough for disclosure
if the patent is of narrow technical breadth (for example, one that
described a basic sorting technique). Furthermore, some patents may
have very long appendices with lots of details. For instance, a patent
assigned to Persistence Software is only twenty-four pages long but has
two appendices, one with the copyrighted source code of the entire
system and one with the user’s manual.”

There is very high variation between the minimum and maximum
number of pages. In our set, the shortest patent for which we consider
the disclosure level quite low has seven pages™ and the longest one for
which we consider the disclosure level quite high has 438 pages. ¥ The
average patent has between thirty and forty pages.

37. US. Patent No. 5499371 (issued Mar. 12, 1996). The patent is assigned to
Persistence Software, Inc.

38. US. Patent No. 5,550,984 (issued Aug. 27, 1996). The patent is assigned to
Matsushita Electric Corporation of America.

39. U.S. Patent No. 4,953,080 (issued Aug. 28, 1990). The patent is assigned to Hewlett-
Packard Company.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 263

Figures are often used to illustrate a patent’s main elements with
schematic diagrams of various kinds and examples of user interfaces
such as a menu picture. Two kinds of figures are typically used for
disclosure of technical details: block diagrams and flowcharts. Block
diagrams are used to represent the principal parts of the system with
drawings to show both their basic functions and their functional
relationships. Flowcharts are used to represent graphically programs,
depicting inputs, outputs, and units of basic activity. In addition to
figures, we can find tables that may describe protocol commands, code
skeletons (for example, function definitions with input/output
arguments), and, sometimes, even code fragments in a programming
language.

Twenty-three patents in our set have medium disclosure levels and
twenty-one have low disclosure levels. Only six have high disclosure
levels and include very detailed code. Thus, the level of disclosure for a
PHOSITA to recreate the invention is typically insufficient. The
implicit assumption behind a patent is that the PHOSITA has the skills,
resources, and tools of the inventor but these are not specified.
Considering the many ways we can develop software today, this is
clearly inappropriate. Indeed, Burk and Lemley have commented on
the low disclosure requirements for software patents (at least, compared
with biotechnology patents) noting that “[t]he Federal Circuit has
essentially excused software inventions from compliance with the
enablement and best mode requirements.””

Disclosure practices differ for fine-grain and large-grain patents.
Fine-grain patents are likely to describe a particular technique for a
specific problem and involve a data structure and associated code.
Disclosure typically involves flowcharts, code skeletons, and code
fragments in a programming language. For instance, a representative
patent” in our set describes a method for controlling the execution of an
object-oriented program to effect a defined action (e.g., stopping the
program) when a specified function is invoked on a specified object
during execution of the program thus, a “breakpoint” can be inserted at
a previously determined place in the program. The invention is useful
for a debugger, a tool that aids software development by giving a user
control over and access to a running program. The patent’s disclosure
level is high. The patent is twenty-five pages long and has twelve

40. Burk & Lemley, supra note 31, at 1156.
41. U.S. Patent No. 5,093,914 (issued Mar. 3, 1992). The patent is assigned to AT&T
Bell Laboratories.

264 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

figures, of which eight are block diagrams and one a flowchart with code
skeleton. In addition, it has eleven tables that illustrate program
execution control with C++ code fragments.

Large-grain patents are broader and can describe an entire system.
They primarily involve interfaces and possibly data structures and code,
but perhaps not at a very deep level of detail. Thus, disclosure typically
involves user interfaces, block diagrams, protocol commands, sometimes
high-level flowcharts but no code fragments. For instance, the longest
patent discussed above that describes an object file system, Hewlett-
Packard’s 080 patent, has eighty-three figures with five block diagrams,
fifty-nine screen displays describing an entire session, and nineteen data
structures.” Thus, the disclosure level is high.

Disclosure practices also differ for system and application software
patents, independent of whether they are fine-grain or large-grain.
System patents tend to give more technical and implementation details
through flowcharts and code fragments, while application patents tend
to focus more on interfaces and thus have less disclosure. In our set, out
of eleven system patents, three have high disclosure level; four have
medium; and four have low. Out of thirty-nine application patents,
three have high disclosure levels; nineteen have medium; and seventeen
have low.

Over time, software has become better and broader addressing an
ever-increasing number of user requirements and thus has become more
complex and sophisticated. To deal with increasing complexity,
software-programming languages have become higher-level, hiding low-
level details to programmers and fostering software design
rationalization through decomposition into manageable pieces.
Software engineering has evolved towards higher levels of abstraction
from simple routines and procedures to more organized units such as
modules, packages, object classes, components, and services. Thus, we
suspect that the level of disclosure has not really changed much over
time but the way software is disclosed has changed. From our set, where
most patents are over a short period (between 1985 and 1995), it is hard
to make any definite observation. However, the more recent patents on
GUI typically rely on object-oriented technology and use object classes
for disclosure. Because object classes have well-defined interfaces and
can be organized in a hierarchical fashion, they provide a good means to
disclose both design and implementation aspects of a complex system.

42. See supra note 39.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 265

Although there seems no compelling reason that the level of
disclosure for software patents should be very much higher than other
classes of invention, there are two practical reasons why reverse
engineering should not be necessary to replicate an invention.” First,
patent disclosure does not require access to an artifact to discover its
secrets. Second, software licenses typically forbid the use of reverse
engineering in any form. Reverse engineering enables one to
understand the implementation, not the design, of the software, which is
better conveyed through higher-level means. Furthermore, reverse
engineering is getting less and less useful as development relies on
sophisticated tools that produce much code automatically and different
tools will produce different code, for the same specification. Thus
reverse engineering may be useful only for fine-grain patents with low
disclosure level. In our set, only one fine-grain patent® could be
successfully reverse engineered.

V. HOW “REAL” ARE SOFTWARE PATENTS?

Part of the reason for the antagonism toward software patents is a
suspicion that they are not granted for real inventions, but are simply a
strategic tactic by big firms to lock-out competitors. Such suspicions
have been partly whipped up by popular books such as Seth Shulman’s
Owning the Future.® The tone of Shulman’s work is set at the outset:

We find university researchers thrown in jail for “stealing” their

own ideas; software firms holding the entire industry to ransom

over basic widely used programming techniques; and life saving
cancer treatments kept from dying patients by legal wrangles
over the underling technology.®

Another seam of literature encourages firms to exploit their patent
“mines,” not just for products but also to generate a royalty stream. The
tenor of this discussion is exemplified in Kevin G. Rivette and David
Kline’s Rembrandts in the Attic:”

43. Here, reverse engineering would mean the acquisition of an example of the patented
software and discovering its secrets by experimentation, for example, by observing its input-
output behavior or by “decompiling” the binary code to reveal the source code.

44, U.S. Patent No. 4,821,220 (issued Apr. 11, 1989). The patent is assigned to
Tektronix, Inc.

45. SETH SHULMAN, OWNING THE FUTURE (1999).

46. Id. front cover flap.

47. KEVIN G. RIVETTE & DAVID KLINE, REMBRANDTS IN THE ATTIC: UNLOCKING
THE HIDDEN VALUE OF PATENTS (2000).

266 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

[This work] provide[s] the first practical and strategic guide that
shows CEOs and other managers how to unlock the enormous
financial and competitive power in their patent portfolios.. . .
The competitive battles once fought for control of markets and
raw materials are today increasingly being waged over the
exclusive rights to new ideas and innovations.

Intellectual property and strategic patenting are also hot topics in
the more restrained professional and scholarly literature.” Internet and
software patents have been among the most prominent targets of the
criticism that firms are running “patent mills” rather than bona fide
research and development (R&D) operations.™

The aim of this section of our paper is to explore whether or not the
software patents in our sample are “real” patents in the sense that they
protect significant innovations solving real problems. We seek to do
this, first, by giving an objective and quantitative measure of whether
software patents compare favorably with patents in general and, second,
by establishing qualitatively whether software patents reflect the real
research agendas of the software community.

In 2000, John R. Allison and Mark A. Lemley established a useful
set of quantitative measures for measuring the novelty and depth of
patents.”” Their two principal measures were the number of prior art
references and the number of claims in a patent. Their paper
considered patents in some fourteen major areas of technology:
pharmaceutical, medical devices, biotechnology, computer-related,
software, semiconductor, electronics, chemistry, mechanics, acoustics,
optics, automotive-related, energy-related, and communications-related.
A random sample of approximately one thousand patents issued during
the two-year period from June 1996 to May 1998 was examined and
each assigned to the related technology area. Of the sample, seventy-six

48. Id. front cover flap.

49. See, e.g.,, H. JACKSON KNIGHT, PATENT STRATEGY FOR RESEARCHERS AND
RESEARCH MANAGERS (2d ed. 1996) (focusing on the strategy and reasons for obtaining a
patent); HOWARD B. ROCKMAN, INTELLECTUAL PROPERTY LAW FOR ENGINEERS AND
SCIENTISTS (2004) (explaining the necessity to engineers and scientists that they retain the
services of intellectual property attorneys).

50. John R. Allison & Emerson H. Tiller, Interner Business Method Patents, in PATENTS
IN THE KNOWLEDGE-BASED ECONOMY 259, 259 (Wesley M. Cohen & Stephen A. Merrill
eds., 2003), available at http://www.nap.edu/books/0309086361/html/ (last visited Apr. 3,
2005). :

51. John R. Allison & Mark A. Lemley, Who’s Patenting What? An Empirical
Exploration of Patent Prosecution, 53 VAND. L. REV. 2099, 2174 (2000).

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 267

patents were for software inventions.” Extrapolating, the authors
estimated that of the 230,000 U.S. patents granted during their period of
interest, some 18,000 were for software inventions.

For each of the fourteen areas of technology, the number of prior art
references was determined, with separate counts for U.S. patent
citations, foreign patent citations, and non-patent citations. The results
for software, with a comparison of the average for all the patents, are
shown in the first two rows of Table 2 in Appendix A. Not surprisingly,
given the recent development of software patents, the number of patent
citations was somewhat less than average. The lack of patent citations
was partly compensated for by an above average number of non-patent
citations. The authors noted:

Interestingly, despite vocal criticism from some quarters, the
software industry actually cited relatively more non-patent prior
art than most other areas of technology. While we think this is
an encouraging sign, it does not necessarily mean that the PTO is
doing a good job of finding the relevant prior art in the software
field. Many commentators have suggested that virtually all the
relevant art in the software industry is non-patent art. If so, the
fact that most prior art cited in software patents still consists of
other patents may mean that the PTO isn’t citing nearly enough
non-patent prior art in the field.”

Thus, these authors leave us in no doubt that given the newness of
the field, software patents have as much technical depth as patents in
other technological areas. Allison and Tiller made a similar analysis of
Internet-related software patents, shown in row 3 of Table 2. This
suggests that for more recent software patents the number of citations is
increasing and now exceeds the average.

In the last row of Table 2, we have computed the citation counts for
the fifty most cited patents. As might be expected, since these are
probably among the leading software patents, the average number of
citations in them is greater than for the average software patent, but not
wildly so.* We conclude that the prior art cited in the fifty most cited
software patents is at least as good as patents in general and as good as
the general run of software patents.

52. There were 242 computer-related patents, including 76 for software. Id. at 2115.

53. Id. at 2131.

54. We found that the nature of non-patent art varied depending on the patent area.
Narrow patents tended to refer more to the academic literature because there is a well-
identified research area (e.g., GUI, database), whereas broad patents tend to refer more to
trade press articles and software vendor papers.

268 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Allison and Lemley also undertook an analysis of the number of
claims in patents in the different technological areas.” As shown in the
first two rows of Table 3 in Appendix A, the number of claims for
software patents is somewhat above the average. The corresponding
claim count for the fifty most cited software patents is shown in the third
row of Table 3. Assuming that the number of claims is not unrelated to
the degree of inventiveness, this data suggests that software patents are
more inventive than average patents, and the fifty most cited software
patents are more inventive still.

We next wish to establish whether software patents reflect the
research agendas of the software community. We suggest this can be
done qualitatively by comparing the subject matter of the patents with
the research agendas of the academic-industry research community at
the time that a patent was applied for/issued.

The highest numbers of patents in our set are in GUI (ten patents)
and database (eight), two areas that correspond to a very active research
agenda since the 1980s.

This research agenda was recognized early by the two major
computer science associations, the Association of Computing Machinery
(ACM) and the Institute of Electrical and Electronics Engineers
(IEEE). The ACM created special interest groups (SIGs) in these
areas: SIGCHI (Computer Human Interaction) and SIGMOD
(Management of Data) with conferences and associated journals, ACM
Transactions on Computer-Human Interaction and ACM Transactions
on Database Systems. Similarly, the IEEE held conferences on these
topics and created journals, such as IEEE Transactions on Visualization
and Computer Graphics and IEEE Transactions on Knowledge and
Data Engineering. 'This research agenda also led to important new
products and players such as Xerox and Apple in GUI, and IBM, Oracle
and others in databases.* All the other patents involve areas which
have been the subject of intense research (CAD, CASE, information
retrieval, knowledge base, multimedia, etc.) for which there are well-
1dentified research communities, products, and companies.

We conclude that there is a strong relationship between the
academic and industrial research agendas. The former is reflected in the
subject matter of conference themes and research publications, while

55. See Allison & Lemley, supra note 51, at 2149, 2158-60.

56. For the commercial history of DBMS and GUIs, see MARTIN CAMPBELL-KELLY,
FROM AIRLINE RESERVATIONS TO SONIC THE HEDGEHOG: A HISTORY OF THE SOFTWARE
INDUSTRY 145-49, 247-51 (2003).

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 269

the latter is evidenced in patents, company formations, and new
products. The relationship between the two is so obvious we would
describe it as “academic-industry lock-step.”

VI. ARE SOFTWARE PATENTS TOO BROAD?

A “broad” patent is one which covers a wide area of the inventive
space. Both wide patent scope and long duration are desirable
attributes from an inventor’s viewpoint. Indeed, a strand of the
economic literature suggests that “greater scope [is] roughly similar to
greater duration in terms of its incentive effect on initial invention.””
However, with almost no exceptions, the twenty-year duration of a
patent is statutorily determined and is non-negotiable.® In contrast, the
breadth of a patent is somewhat elastic and is determined at the outset
by a patent examiner and by the courts if the patent is contested.”

There is a significant economic literature on patent scope, much of
which predates the patentability of software. There are two principal
and contrary viewpoints: one that broad patents are better, the other
that narrow patents are better.

The most influential “broad is better” argument is related to the
“the prospect theory” of patents, which asserts that a new invention
space is akin to a mining prospect.” Broad protection has the socially
desirable effect of excluding competitors from mining the prospect.
Such exclusion is desirable because it prevents the waste of too many
innovators searching for the same invention, releasing them to make
non-competing inventions or to seek other opportunities. On the other
hand, the advocates of “narrow is better” argue that narrow patents
“avoid stifling progress”® by encouraging competitors to develop closely
related inventions so that the technology develops more rapidly than if
just a single firm or a small number of firms participated.

The broad-versus-narrow debate has to be qualified by the type of
invention that is being considered. Two styles of invention are relevant

57. Robert P. Merges & Richard R. Nelson, On the Complex Economics of Patent Scope,
90 COLUM. L. REV. 839, 869 (1990).

58. One exception is the extension of patent terms on pharmaceuticals to compensate
for regulatory lag. Id. at 839.

59. The duration of patents is discussed supra Part VIL

60. Edmund W. Kitch, The Nature and Function of the Patent System, 20 J.L.. & ECON.
265 (1977).

61. Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the Software
Industry, 89 CAL. L. REV. 3, 16 (2001).

270 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

in the software debate: discrete computer-related inventions and pure
software inventions.

A discrete invention is a well-defined invention that “does not define
any broad prospect.” Classic examples are King Gillette’s safety razor
and Lazlo and Georg Biro’s ball-point pen. In computer-related
inventions, a good example would be Texas Instruments’ “Speak &
Spell.”® Although the innovator possessing a broad patent may “profit
handsomely” from it, “possession by that firm of a proprietary lock on
the invention is not a serious hindrance to inventive work by many other
firms.”™ In short, the progress of civilization is not going to be
threatened by a temporary monopoly in safety razors, ball-point pens, or
talking toys, whereas the possession of a patent may encourage the
inventor to invest in production with the assurance that it cannot be
rapidly imitated. ,

Pure software inventions are often characterized as a “cumulative”
technology, proceeding by sequential innovation whereby each
generation of software builds on the innovations of previous
generations. With pure software inventions, therefore, society would be
disadvantaged if a broad software patent could hold up a subsequent
software innovation because it required a unique, patented technology.
A complex piece of software, it is argued, might need to make use of
hundreds of patents and the owner of a single patent could then hold up
all progress.” For this reason, it is argued that patents should be defined
narrowly so that it is feasible for inventors to generate substitutes. A
good example of a software patent that was defined relatively narrowly
was the MP3 music compression algorithm. Although the MP3 patent®
has proved profitable for its owners, it is sufficiently narrow that there
are several substitutes—some patented some not—such as Microsoft’s
WMA, Real Networks RAM, Apple Computer QIF, and the open-
source OGG format. A whole industry from Napster to iTunes is
currently developing around such algorithms. In our experience, few
software inventions are unique in the sense that adequate substitutes
cannot be devised.

62. Merges & Nelson, supra note 57, at 880.

63. U.S. Patent No. 4,516,260 (issued Aug. 29, 1980). Incidentally, this patent has
exemplary disclosure and includes a fifty-page program listing.

64. Merges & Nelson, supra note 57, at 881.

65. Bryan Pfaffenberger, The Coming Software Patent Crisis: Can Linux Survive?,
LINUX JOURNAL (Aug. 10, 1999), at http://www.linuxjournal.com/article.php?sid=5079.

66. U.S. Patent No. 5,701,346 (issued Dec. 23, 1997).

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 271

Another complication of pure software inventions is the impact of
network effects, by which consumers benefit from the adoption of a
common technology or standard.” In personal computing—where
network effects are most apparent—investments in learning and the
ability to share files have led to dominant applications that have
maintained an eighty-plus percent market share, largely independent of
the technical merits of the software.® Of course, although network
effects can lock users into an inferior technology for a significant period
of time, there is substantial evidence that superior products do
ultimately win out.” But network effects undoubtedly protect
incumbents from non-innovative, “me too” competitors.

Because of the overwhelming power of network effects in software,
it can be argued that they are a sufficient reward in themselves, and
patents simply confer another gratuitous layer of protection. Of course,
this may be true for market leaders such as IBM and Microsoft, but not
for innovators in general. Indeed, the existence of a patent may be
crucial for a small innovative firm in preventing appropriation of its
technology by a dominant firm. For example, a major innovative area in
the mid-1990s involved Web-authoring tools, for which Vermeer
Technologies applied for a set of patents before the concept diffused
very widely.” This gave the firm protection against major players such
as Microsoft and Netscape Communications; in the end, Microsoft
acquired Vermeer and its FrontPage software became a Microsoft
product.

In this instance we do not know whether Microsoft purchased
Vermeer for its patents or for the lead-time of an existing product—
probably both. In fact, Vermeer’s patents were not so broadly drawn
that it was impossible for others to develop Webpage-authoring tools
and it became a major software category.”

Our dataset of the fifty most cited patents enables us to make some
general observations about the appropriateness of the breadth of

67. Richard N. Langlois, External Economies and Economic Progress: The Case of the
Microcomputer Industry, 66 BUS. HIST. REV. 1 (1992).

68. For a software-focused discussion of network effects, see STANLEY J. LIEBOWITZ &
STEPHEN E. MARGOLIS, WINNERS, LOSERS AND MICROSOFT: COMPETITION AND
ANTITRUST IN HIGH TECHNOLOGY (1999).

69. Liebowitz and Margolis have studied this phenomenon in several software
categories, including word processors, spreadsheets, and web browsers. Id. at 163-200, 217-23.

70. CHARLES H. FERGUSON, HIGH ST@KES, NO PRISONERS: A WINNER’S TALE OF
GREED AND GLORY IN THE INTERNET WARS 102-35 (1999).

71. Mainstream products competing with FrontPage included HomePage by Claris,
DreamWeaver by Macromedia, HotMetal by XMetaL.

272 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

software patents. Are patents generally construed narrowly, or are they
so broad that they impede progress?

From a legal standpoint, the breadth of a patent is determined by the
scope of its claims, which is likely to be broader than the scope of
enablement. In the last analysis, the scope of a patent can be
determined only by a court in the event that the patent is infringed or
challenged. As technical experts, we can however, evaluate the
technical breadth of patents, that is their scope of enablement. This has
been done in Table 6 in Appendix A, where we classify patents being of
broad, medium, or narrow technical breadth. Among the fifty patents of
study, eighteen are broad, six medium and twenty-six narrow.

We find that there is no simple correspondence between the
technical breadth of a patent and the number of claims. Some narrow
patents have many claims, while some broad patents have few claims.
For example, H-Renee’s 4,992,940 patent has only twelve claims but is
technically broad, while a patent assigned to ActaMed Corporation has
eighty-five detailed claims and its technical breadth is narrow.”

We found a few patents in our set that were so broad that they could
potentially foreclose the inventive space for competitors. This is the
case, for 1nstance of two patents from Teknowledge. One patent has
seventy claims,” the other sixty-nine,” and both cover broadly the space
of knowledge base using inference rules. However, we think there
would still be a way to invent around the patents, for instance, by
Spec1ahzmg the knowledge base for spec1f1c applications. Indeed, there
is actually a patent from Westinghouse” in our set which applies a
knowledge base for monitoring and diagnosing sensor and interactive
based process systems. The only case where we believe it would be
difficult to invent around is when the patent is both broad and obvious,
as the H-Renee’s patent.

Although at the micro-level of individual patents there is no simple
correspondence between technical breadth and the number of claims,
the sample of fifty patents taken as a whole shows a strong correlation. "
Patents we classify as broad have, on average, nearly forty claims,
medium breadth patents about twenty-five claims, and narrow patents
about twenty-two claims. We also note that the number of prior art

72. U.S. Patent No. 5,560,005 (issued Sept. 24, 1996).
73. U.S. Patent No. 4,591,983 (issued May 27, 1986)
74. U.S. Patent No. 4,658,370 (issued Apr. 14, 1987)
75. U.S. Patent No. 4,649,515 (issued Mar. 10, 1987).
76. See infra Table 4, app. A.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 273

references is strongly correlated to technical breadth: broad patents
have an average of about twenty-seven references, medium breadth
eighteen references, and narrow about thirteen. Thus, our evaluation of
technical breadth conforms to the positive correlations of scope with
claims and prior art references observed elsewhere in the economic
literature.” Interestingly, the number of citations from subsequent
patents is negatively correlated to technical breadth. It has been noted
that the value of a patent is positively correlated to the number of
citations, rather like the number of citations of a scientific paper is a
measure of its value.® This would suggest that software techniques
described by technically narrow patents are of greater utility than broad
software inventions.

VII. DO SOFTWARE PATENTS LAST TOO LONG?

The effective life of a software patent is generally believed to be
short. The term “effective life” has been defined as “the expected time
until a patented product is replaced in the market.”” Even though the
actual life of a U.S. patent is twenty years from the date of filing, this is
immaterial for inventions when the marketable life of the invention is
considerably less. Patent protection ceases when either its twenty-year
life is expired or a new innovation has rendered it “irrelevant.”®

It is frequently asserted that software patents last too long.” Indeed,
Pamela Samuelson has commented that the pace of innovation in
software is so fast that by the time a patent has been issued the useful
life of an invention may be over.” Whether one agrees or not, software
patents are far from unique in this criticism. Several authors have
asserted that the effective life of patents in many technologies is far less

77. See, e.g., Dietmar Harhoff et al., Citations, Family Size, Opposition and the Value of
Patent Rights, 32 RES. POL’Y 1343-63 (2003);.Jean O. Lanjouw & Mark Schankerman, The
Quality of Ideas: Measuring Innovation with Multiple Indicators, (NBER Working Paper
7345, 1999); Joshua Lerner, The Imporiance of Patent Scope: An Empirical Analysis, 25
RAND J. ECON. 319-33 (1994).

78. Harhoff, supra note 77, at 1350.

79. Ted O’Donoghue et al., Patent Breadth, Patent Life, and the Pace of Technological
Progress,7J. ECON. & MGMT. STRATEGY 1,2 (1998).

80. Id.

81. Cohen & Lemley, supra note 61, at 46; see Jason V. Morgan, Chaining Open Source
Software: The Case against Sofiware Patents, League for Programming Freedom, at
http://\pf.ai.mit.edu/Patents/chaining-oss.html (last modified Jan. 15, 2002).

. 82 Pamela Samuelson et al., A Manifesto Concerning the Legal Protection of Computer
Programs, 94 COLUM. L. REV. 2308, n.134 (1994).

274 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

than twenty years and may be much closer to four or five years.® Nor
does everyone agree that excess patent duration actually matters. For
example, William Nordhaus observed as long ago as 1972 that, despite
the short effective life of patents, “there does not seem to be a strong
case for making changes.”” :

As noted above in Part VI, it has been argued that broad patents of
short duration or narrow patents of long duration are both effective in
protecting innovations. A broad patent of short duration, less than two
years, would foreclose entry to a large product space enabling an
innovating firm to gain a first-mover advantage; when the patent had
expired, the firm would then be subject to full competition. In the case
of the software industry, this would not, in practice, be very different
from the way the industry currently operates, where first-mover
advantage is sometimes argued to be sufficient and patent protection is
therefore unnecessary.” Where inventions are not patented, however,
developers typically work in trade secrecy in order to be first to market,
and imitators have to use reverse engineering to discover the novel
technologies. Where a firm takes out a patent, the economic loss from
both trade secrecy and reverse engineering are reduced. By contrast, a
narrow patent of long duration would confer longer-term advantage to
the innovation, but because the product space was narrow, it would be
much easier for competitors to create non-infringing substitutes.

Since patent length has only recently been changed from seventeen
years after issuance to twenty years after filing, it is unlikely that there
will be another change to statutory patent length in the near future.
There is even less reason to suppose that a special provision will be
made for software inventions. There are therefore two issues we wanted
to address in this paper: the effective life of software patents and the
harm, if any, caused by a twenty-year software patent.

First, what is the effective life of the patents in our dataset? Does
the average length confirm empirically that the effective life of parents
is much less than twenty years? Detailed examination shows that the
patents’ effective life is between three to ten years after issuance, with
an average of five. The effective life of patents depends on the life of
the technologies on which they bear, because system-software patents

83. O’Donoghue, supra note 79, at 2.

84. William D. Nordhaus, The Optimum Life of a Patent: A Reply, 62 AM. ECON. REV.
428, 428 (1972).

85. See, e.g., Campaign Against Software Patents, The Danger of Software Patents to
Europe, 2002, at http://patents.caliu.info/explicacio.en.html (Matt Bonner trans.) (last
modified May 2, 2002).

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 275

typically last longer than application patents whose technologies change
more rapidly. For example, patents on programming language support
may well last ten years or more because of the longevity of the
programming language. However, patents in object-oriented databases
or knowledge bases did not last long because the technologies almost
disappeared after a ten-year period.

Second, given that patent length is fixed, is any actual harm done by
the twenty-year duration of software patents? Do patents block
progress in the software field because a superior invention would
infringe on them. For example, Cohen and Lemley have argued that a
patent drawn too broadly might block innovations two or three
generations subsequent to the original innovation.*

We find that patents with a wide technical breadth create a potential
for the kind of bottleneck Cohen and Lemley discuss, but such patents
are not insurmountable obstacles, and time tends to reduce the
potential. For example, the two patents in the dataset from
Teknowledge are broad and have the capability of holding up
subsequent innovations in knowledge base management. Although
these patents have high technical depth, the knowledge system they
protect is described using high-level rules and a general inference
engine. However, these technically broad patents are no longer a
problem, because the knowledge base approach, as originally designed,
did not really succeed. A different and superior technical approach
emerged despite broad patents. Blocking is a potential problem only if
the inventor has chosen the “best” solution path. Another patent with
such capacity is Encyclopaedia Britannica’s, which has low technical
depth and a high number of claims.” However, this patent was
subsequently re-examined and its breadth narrowed.

The patents with a narrow technical breadth in our set do not have
obvious hold-up potential. Depending on how broadly claims are drawn
and interpreted, we believe that substitute innovations could be devised
for all the patents. For example, AT&T’s patent for software
controlling the execution of object-oriented programs using breakpoints
is quite broadly drawn, and the claims are not specific to a particular
programming language or data structure.®* However, among patents
citing to this patent, there are several for controlling program execution
that use breakpoints. These patents are non-infringing, or at least have

86. Cohen & Lemley, supra note 61, at 48.
87. U.S. Patent No. 5,241,671 (issued Aug. 31, 1993).
88. See supra note 51 and accompanying text.

276 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

not been challenged by AT&T. Although not all algorithms are equally
good, it is possible to devise substitutes. For example, if a developer had
not wanted to pay the license fee to use the famous LZW data
compression patent, then there were plenty of other algorithms to
choose from, although they were not all equally good.” The developer
was faced with the choice of paying to use LZW or using a less efficient,
royalty-free algorithm. This way the patent system rewarded the
inventor of LZW, but did not impede the progress of software in
general.

VIII. COPYRIGHT, PATENTS, OR BOTH?

There is considerable controversy over which form of IP protection
is appropriate for software. Some argue that copyright alone is
sufficient,” while others argue that patents are needed to protect against
rapid imitation.” Here we summarize very briefly the principal
arguments of the two forms of protection.

The benefits and convenience of copyright protection are
superficially appealing to a software author. Copyright protects both
the source code and the object code. It is free of cost and lasts for
seventy years after the death of the author. However, copyright
provides no protection for the functions of software, and a competitor
can legally imitate them. Although there have been legal cases that
have tested the limits to which imitation is permissible, in general
copyright protects only the exposition of the program, not its concepts
and ideas. In practice, therefore, the source code of software is only
rarely disclosed and the author actually relies on trade secrecy. The
need for trade secrecy is recognized by the Copyright Office: if an
author wishes to formally register copyright, it is permissible to deposit a
“striped” version of the source code listing,” or only the first and last
twenty-five pages of the listing.”

89. U.S. Patent No. 4,558,302 (issued Dec. 10, 1985). The patent was assigned to the
Sperry Corp. and is now expired.

90. See Pamela Samuelson, Benson Revisited: The Case against Patent Protection for
Algorithms and Other Computer-Program Related Inventions, 39 EMORY L.J. 1025, 1135-36
(1990); John Swinson, Copyright or Patent or Both: An Algorithmic Approach to Computer
Software Protection, 5 HARV. J.L. & TECH. 145, 147 (1991).

91. Patrick K. Bobko, Open-Source Software and the Demise of Copyright, 27 RUTGERS
COMPUTER & TECH. L.J. 51 (2001).

92. That is, a photocopy taken through a diagonal zebra striped mask that makes the
source code unusable.

93. COPYRIGHT BASICS, U.S. COPYRIGHT OFFICE, CIRC. NO. 1, at 8 (Sept. 2000),
available at http://www.copyright.gov/circs/circOl.pdf.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 277

Copyright has distinct benefits and disadvantages for society.
Because products can be freely imitated for any new software genre, the
market rapidly supplies low cost imitations or “clones” that drive prices
down. There are two important disadvantages of this rapid imitation.
First, the easy cloning of products does not necessarily result in a rich
ecology of competing products, because entrepreneurs do not gain
sufficient rewards to invest in R&D. Second, trade secrecy inhibits the
diffusion of knowledge. Competing products are inevitably written from
scratch and developers are constantly “reinventing the wheel.””

For a developer, the most important benefit of a patent is that it
protects the functions of software. The main disadvantage of a patent
for a developer, however, is that in disclosing the technology, it becomes
more vulnerable to improvement—and therefore obsolescence—in the
marketplace than if held as a trade secret. Additionally, patents are
relatively expensive in terms of costs for patent attorney, application,
and renewal fees.

Again, software patents have distinct benefits and costs for society.
The main benefits are that technical knowledge is diffused instead of
remaining a trade secret, and after expiration of the patent, this
knowledge can be freely used. The cost to society is, of course, that the
monopoly enjoyed by an inventor may cause prices to be higher than
otherwise would be the case.

The fact that software is currently protected by patents and
copyright seems, on the face of it, to be having the best of both worlds.
Here, we argue by examining actual patents in our dataset that both
forms of protection are needed and that they serve to protect different
aspects of software. We will consider both large-grain and fine-grain
patents, since their cases are somewhat different. Large-grain software
patents often protect a whole product while fine-grain patents protect a
single component or part of a product.

A very clear example of a large-grain software artifact needing both
forms of protection is the CD-ROM encyclopedia of the kind
exemplified by Encyclopaedia Britannica’s patent in our dataset.” An
electronic encyclopedia contains two kinds of intellectual investments.
First, there is the software whose functions and code create the on-line
experience for the user and provide different pathways to access the
information inside the encyclopedia. In the rapidly evolving technology

94. Mark A. Haynes, Commentary, Black Holes of Innovation in the Software Arts, 14
BERKELEY TECH. L.J. 567, 569 (1999).
95. U.S. Patent No. 5,241,671, supra note 87.

278 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 922

of online encyclopedias, the twenty-year duration of the patent seems
perfectly adequate. The second form of protection is needed for the
content—principally the text of the encyclopedia, which has been
created not by software writers but by scholars commissioned by the
encyclopedia’s editors. In almost all cases, the text for CD-ROM
encyclopedias has been derived from a hardcopy version.”” The life
cycle of an encyclopedia is traditionally very long; for example, the
eleventh edition of the Encyclopaedia Britannica, published in 1911, was
not replaced entirely until the fifteenth edition was produced in 1974, at
a cost of thirty-two million dollars—which is the basis of today’s edition.
Of course, the garden of knowledge is constantly pruned and renewed,
but it is only very occasionally that the entire work is revised. In this
context, the statutory duration of copyright seems proportionate,

The Encyclopaedia Britannica patent is therefore protecting a
substantial software investment made when repurposing its copyright-
protected, text-based encyclopedia into electronic form. The degree of
novelty is comparable with the reorganization of the encyclopedia that
took place for the 1974 edition, when the concepts of “macropedia” and
“micropedia” were introduced. For example, in the CD-ROM version,
information could be accessed by novel means such as timelines,
graphical point-and-click menus, or a “researcher’s assistant,” which
were not possible with the bound volumes.

These innovations were made in the context of an earlier market
entry, the Grolier CD-ROM Encyclopedia, which was almost entirely
text based. Clearly, Encyclopaedia Britannica gained from patent
protection since its innovations could not be copied, but what did society
gain from the patent? Principally, it gained from the disclosure of
knowledge.

The patent contains some twenty pages of architecture and flow
diagrams. Although the disclosure level is quite low, and the patent can
be criticized on these grounds, it is of a level similar to that which could
be gained from conventional, and costly, reverse engineering. It would
serve as an effective primer for any one entering the CD-ROM
encyclopedia business, or for a competitor seeking to improve its
product.

Incidentally, the subsequent history of this patent is interesting. It
was re-examined shortly after being issued, and several of its forty-one

96. For histories of CD-ROM encyclopedias, see RANDALL E., STROSS, THE
MICROSOFT WAY: THE REAL STORY OF HOW THE COMPANY OUTSMARTS ITS
COMPETITION 78-93 (1996); CAMPBELL-KELLY, supra note 56, at 288-94.

2005) A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 279

claims were cancelled. These included such ideas as timelines and
graphical point-and-click menus, which were found in a more thorough
search of the prior art. This no doubt reflects partly the poor quality of
prior art searching when the patent was applied for in 1989; it has been
much improved since.” However, it is worth noting that patentees
cannot claim large product spaces in important markets without
challenge. In fact, the mid 1990s turned out to be the heyday of CD-
ROM encyclopedias with about six major players.

The CD-ROM encyclopedia was in the vanguard of a convergence
of code and content in software products that is still in progress. Other
examples include computer games, financial websites, and tax
preparation systems.” In fact, large-grain software artifacts, especially
end-user products, typically contain elements that require copyright
protection—such as help files, dictionaries, tutorial materials, and user
interfaces.

Where disclosure in a software patent is particularly full, more
knowledge may be revealed than is covered by the claims. Several
patents in our set include a statement of the form:

A portion of the disclosure of this patent document contains

material which is subject to copyright protection. The copyright

owner has no objection to the facsimile reproduction by anyone

of the patent document or the patent disclosure, as it appears in

the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.”

If the entire source code was appended to the patent—as some
advocate—then all the programming work not embodied in the
invention could be freely appropriated.'” For this reason, the additional
protection of copyright is necessary or developers would tend to become
as economical as possible in their disclosure.

The situation for fine-grain inventions is different. These do not
typically protect a product, but rather a single component or part of a
product. In our opinion, the essence of these patents is the code; it
should be disclosed so that inventors can improve on the invention and
make use of it when the patent has expired—in both cases without

97. See Examination Guidelines for Computer-Related Inventions, Final Version, 61
C.F.R. § 7478 (1996).

98. For a discussion on “code vs. content,” see CAMPBELL-KELLY, supra note 56, at 288-
89.

99. See, e.g., U.S. Patent No. 5,119,475(issued June 2, 1992); U.S. Patent No. 5,151,987
(issued Sept. 29, 1992).

100. Burke, supra note 36, at 1160.

280 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

undue experimentation. Not making adequate disclosure is to want the
best of both worlds: patent protection with trade secrecy. Worse, to
protect code by copyright—so that use cannot be made of it when the
patent has expired—seems to go against the most fundamental patent
bargain.

In our sample, there are good and bad examples. A patent with
exemplary disclosure is an AT&T debugging technique.”™ There are
eleven pages of drawings showing detailed data structures, a highly
detailed functional description, and code fragments, with no copyright
assertions. On the other hand, an IBM patent, whose disclosure in any
case is only moderate, contains a copyright notice at the beginning of
the specification, and a code fragment has a copyright notice appended.
Therefore, although the code fragment serves the purpose of disclosure,
it could not be freely used once the patent has expired."”

IX. CONCLUSION

There is much discussion in legal and economic literature about the
one-size-fits-all nature of the patent system.'” Yet, surprisingly, the
patent system does manage to apply a single set of conventions to
inventions as disparate as zip-fasteners, Viagra, and radio sets. Software
is better seen not as a sui generis phenomenon, but simply as a
newcomer to the heterogeneous universe of patentable inventions.
Although special IP regimes have very occasionally been devised for
particular technologies,”™ it is generally accepted that the legislature
cannot create a new IP environment for each new technology that
happens to come along. However, there are “policy levers” by which
the legislature, courts, and the USPTO can shape the norms of
obviousness, disclosure, and breadth in software patents.'” It is in that
spirit that we make our conclusions.

101. U.S. Patent No. 5,093,914 (issued Mar. 3, 1992).

102. U.S. Patent No. 5,151,987 (issued Sept. 29, 1992).

103. R. Polk Wagner, (Mostly) against Exceptionalism, in PERSPECTIVES ON
PROPERTIES OF THE HUMAN GENOME PROJECT 367-82 (Scott Kieff ed., 2003); JAMES
BESSEN & ERIC MASKIN, SEQUENTIAL INNOVATION, PATENTS AND IMITATION, 7-8 (MIT
Depart. of Econ. Working Paper No. 00-01, 2000).

104. For example, semiconductors were the subject of the Semiconductor Chip
Protection Act 1984, 17 U.S.C. §§ 901-14 (2000).

105. See Dan L. Burk & Mark A. Lemley, Policy Levers in Patent Law, 89 VA. L. REV.
1575 (2003), available at http://repositories.cdlib.org/cgi/viewcontent.cgi?article=1089
&context=blewp.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 281

First, we did not find that software patents were, generally, too
obvious. In our set of fifty, only two could be described as obvious, and
even those were not particularly obvious by the standard of patents in
general. We found that the quality of patents was somewhat like the
quality of computer-science research papers—certainly some were
better than others were, but there was reasonably high standard of
acceptance.

We found only six of our fifty patents had completely adequate
disclosure. The remaining forty-four had medium or low disclosure that
would make reproducing the invention either time-consuming or
problematic. Even though disclosure is not low by the standard of
mechanical inventions, we think that there are grounds for
improvement, since it is relatively easy to improve the quality of
disclosure by repurposing specifications and code used in the
development process.

We found that software patents are “real” in the sense that they are
not merely strategic devices intended to block the entry of competitors.
They have genuine technical depth as measured by the number of prior
art citations and claims. We found substantial evidence that the subject
matter of patents was in line with the contemporary research agendas of
the computer science community.

We found the assertion that software patents are over-broad difficult
to refute or substantiate. There appeared to be no general correlation
between the number of claims and patent breadth. However, empirical
inspection of this group of patents showed that their potential for
blocking or hold-up was minimal. Moreover, in one case an over-broad
patent had been re-examined to narrow its claims.

We found that the effective life of patents in the dataset to be much
shorter than the statutory twenty-year duration, perhaps as little as five
years on average. Because the technologies so quickly were made
obsolete, we did not see that this caused a significant problem. In any
case, narrowing of patent breadth is an effective remedy for over-long
patent duration.

We found that both copyright and software patents are needed to
adequately protect large-grain software artifacts, particularly when they
contain both code and literary content. In the case of fine-grain
software inventions, we felt that there was a risk that copyrighting code
could extend patent life by protecting the best mode of recreation.

282 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol.9:2

APPENDIX A

Table 1 classifies the fifty most-cited software patents by technology.
To facilitate deeper analysis, Table 5 lists the fifty patents ordered by
class, technology and decreasing number of cites, and includes the
patent title, To assess further the technical depth, disclosure level,
claims, technical breadth, and prior art of software patents, Table 6
describes the fifty patents using several technical indicators:

“#Pages” gives the number of pages that describes the patent. A
high number of pages suggest a detailed description.

“#Figs” gives the total number of figures of the patent. Figures are
used to illustrate the patent’s main elements with schematic diagrams of
various kinds and examples of user interfaces, such as a menu picture.
Two kinds of figures are typically used for disclosure of technical details:
block diagrams (to represent graphically the principal parts of the
system with their functional relationships) and flowcharts (to represent
graphically programs). In addition to these, we can find tables that may
describe protocol commands, code skeletons, and sometimes even code
fragments in a programming language.

“Tech. depth” presents the technical depth of a patent as low (L),
medium (M) or, high (H). Low technical depth usually means very
high-level description that avoids important technical details. High
technical depth means emphasis on the important technical details.
Most patents in our sample set have high technical depth, which
probably explains their high number of citations. In particular, almost
all fine-grain/system software patents have high technical depth.

“Discl. level” presents the level of disclosure of each patent. We
define this as the ease for a skilled practitioner to convert a patent into
software programs. Obviously, there is a strong correlation between
technical depth and disclosure level. In particular, high disclosure level
requires high technical depth. On the other hand, low technical depth
and low disclosure level mean that the patent is overly general.

“Tech. breadth” presents the technical breadth of each patent in our
set as broad (B), medium (M), or narrow (N).

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS

283

Table 1. Software patents classification by technology

Fine-grain
(one or a few
components)

Large-grain
(several or many components)

Application
Software
(specific)
39 patents

GUI

» Jeffrey S. Risberg
(ind.)

Video application (Video)
* Robert M. Best (ind.)
2 patents

Banking/commerce (BC)

* IBM, Online Resources, Strategic Processing,
Citibank.

Computer Aided Design (CAD)

* International Chip Corp.

Computer Aided Software Engineering (CASE)
* Xerox, Apollo, Minicom Data.
Communication (Com)

¢ Prodigy Services, IBM, National
Semiconductor.

Database (DB)

e FEastman Kodak, HP, Tektronix, Bull, H-
Renee, Persistence Software, ActaMed, Texas
Instruments.

Graphical User Interface (GUI)

e Xerox (1), David H. Judson (ind.), AT&T,
U. Pittsburgh, Schlumberger, Cadware,
Tektronix, Xerox (2), Taligent, Sun.
Information Retrieval (IR)

* Sun.

Knowledge Base (KB)

e Teknowledge (1), Teknowledge (2),
Westinghouse Electric.

Multimedia (MM)

s Encyclopaedia Britannica, Sony.

Security (Sec)

¢ International Security Note and Computer,
Matsushita,

37 patents

System
Software
(generic)
11 patents

Programming Language
support (PL)

s AT&T, Tektronix,
IBM, 501 Philon.

Task scheduler (TS)

e Tektronix.

5 patents

File system (FS)

+ HP, R.J. Reynolds Tobacco.
Middleware (MW)

o Software AG, Tolerant Systems, Bull.
Real-time system (RTS)

* Hazox.

6 patents

284 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Table 2. Prior art

Sample
Size Reference type Mean Median Min Max
All patents 995 U.S. Patent 10.34 7 0 137
Foreign Patent 2.44 0 43
Non-patent 2.37 0 0 68
Total 15.16 10 0 163
Software 76 U.S. Patent 9.59 1 112
patents Foreign Patent 1.26 0 12
Non-patent 3.54 0 36
Total 14,39 10 1 137
Internet 330 Patent 12.03 n/a 0 353
software Non-patent 4.83 n/a 0 169
technology Total 16.86 n/a 1 376
Fifty most | 50 U.S. Patent 10.80 8 1 38
cited Foreign Patent 0.52 0 8
software Non-patent 6.88 3 0 45
patents Total 18.20 12 3 84

Source: John R. Allison & Mark A. Lemley, Who’s Patenting What?
An Empirical Exploration of Patent Prosecution, 53 VAND. L. REV.
2099, 2149, 2158-60 (2000).

Table 3. Claims

Sample) .
. Mean Median Min Max
Size
All patents 995 14.87 12 1 120
Software patents 76 17.11 11 1 120
Fifty most cited software patents 50 28.66 21 6 85

Table 4. Technical breadth vs. claims, prior art references, and forward

citations
Technical breadth Broad | Medium | Narrow
Average number of claims 39.56 | 25.33 21.88
Average number of prior art references | 26.78 | 18.17 12.65
Average number of forward citations 109.44 | 12567 134.65

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS

285

Table 5 describes our set of fifty patents, ordered by class (FGAS:
fine-grain application software, FGSS: fine-grain system software,
LGAS: large-grain application software, LGSS: large-grain system
software), technology and decreasing number of cites.

Table 5. Patent descriptions

Patent No. of
Company Year |Class | Tech,) Title
Number Cites
5339392 (Independent |1994 [FGAS {GUI [109 Apparatus and method for
inventor creation of a user definable
video displayed document
showing changes in real time
data
4305131 | Independent |1981 {FGAS |Video |174 Dialog between TV movies and
inventor human viewers
5093914 | AT&T 1992 |[FGSS |PL 175 Method of controlling the
execution of object-oriented
programs
4821220 | Tektronix 1989 |FGSS |PL 150 System for animating program
operation and displaying time-
based
5151987 | IBM 1992 |FGSS |PL 123 Recovery objects in an object
oriented computing environment
4667290 [501 Philon 1987 |FGSS |PL 119 Compilers using a universal
intermediate language
5136705 | Tektronix 1992 |[FGSS | TS 109 Method of generating instruction
sequences for controlling data
flow
4277837 | IBM 1981 |LGAS {BC 144 Personal portable terminal for
financial transactions
5220501 | Online Res. 1993 LGAS |BC 142 Method and system for remote
delivery of retail banking
services
4799156 | Strat. Process. | 1989 | LGAS | BC 138 Interactive market management
system
5557518 | Citibank 1996 | LGAS |BC 54 Trusted agents for open

electronic commerce

2860 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Patent No. of
Company Year |Class |Tech, Title

Number Cites

4922432 | Int. Chip 1990 |LGAS |CAD |138 Knowledge based method and
apparatus for designing
integrated circuits using
functional specifications

4558413 | Xerox 1985 | LGAS | CASE | 263 Software version management
system

4809170 | Apollo 1989 LGAS | CASE | 145 Computer device for aiding in
the development of software
system

5155847 | Minicom 1992 | LGAS | CASE | 117 Method and apparatus for
updating software at remote
locations

5347632 | Prodigy 1994 |LGAS | Com {136 Reception system for an

interactive computer network
and method of operation
5333266 | IBM 1994 | LGAS |Com |119 Method and apparatus for
message handling in computer

systems
5406557 | National 1995 LGAS | Com |56 Inter-enterprise electronic mail
Semi- hub
conductor
5181162 | Kodak 1993 LGAS | DB 198 Document management and
production system
5133075 | HP 1992 | LGAS | DB 164 Method of monitoring changes

in attribute values of object in an
object-oriented database
4853843 | Tektronix 1989 LGAS | DB 122 System for merging virtual
partitions of a distributed

database
4769772 | Bull HN Info. | 1988 |LGAS | DB 107 Automated query optimization
Sys method using both global and

parallel local optimizations for

materialization access planning

for distributed databases

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 287

Patent No. of
Company Year | Class | Tech. Title
Number Cites
4992940 | H-Renee 1991 LGAS | DB 107 System and method for

automated selection of
equipment for purchase through
input of user desired
specifications

5499371 | Persistence 1996 |LGAS | DB 59 Method and apparatus for

automatic generation of object

oriented code for mapping
relational data to objects

5560005 | ActaMed 1996 | LGAS | DB 57 Methods and systems for object-

based relational distributed

databases

5437027 | Texas Inst. 1995 LGAS | DB 52 System and method for database
management supporting object-
oriented programming

5008853 | Xerox 1991 {LGAS |GUI [193 Representation of collaborative

multi-user activities relative to
shared structured data objects in
a networked workstation

environment

5572643 | Individual 1996 |LGAS |GUI 173 Web browser with dynamic
display of information objects
during linking

4555775 | AT&T 1985 |[LGAS | GUI 170 Dynamic generation and
overlaying of graphic windows
for multiple active program
storage areas

5041992 | U. Pittsburgh {1991 LGAS | GUI 169 Interactive methed of
developing software interfaces

5119475 | Schiumberger {1992 |LGAS |GUI | 157 Object-oriented framework for
Tech. Corp. menu definition

4813013 | Cadware 1989 [JLGAS |GUI 149 Schematic diagram generating
system using library of general

purpose interactively selectable

graphic primitives to create

special applications icons

288 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Patent
Number

Company

Year

Class

Tech.

No. of
Cites

Title

4885717

Tektronix

1989

LGAS

GUI

148

System for graphically
representing operation of object-
oriented programs

5072412

Xerox

1991

LGAS

GUI

120

User interface with multiple
workspaces for sharing display
system objects

5500929

Taligent

1996

LGAS

GUI

55

System for browsing a network
resource book with tabs attached

to pages

5524195

Sun Microsys.,
Inc.

1996

LGAS

GUI

48

Graphical user interface for
interactive television with an
animated agent

5530852

Sun Microsys.,
Inc.

1996

LGAS

IR

125

Method for extracting profiles
and topics from a first file
written in a first markup
language and generating files in
different markup languages
containing the profiles and topics
for use in accessing data
described by the profiles and
topics

4658370

Teknowledge

1987

LGAS

KB

114

Knowledge engineering tool

4591983

Teknowledge

1986

LGAS

KB

113

Hierarchical knowledge system

4649515

Westinghouse

1987

LGAS

KB

111

Methods and apparatus for
system fault diagnosis and
control

5241671

Encyclopedia
Britannica

1993

LGAS

MM

137

Multimedia search system using
a plurality of entry path means
which indicate interrelatedness
of information

5307456

Sony

1994

LGAS

MM

107

Integrated multi-media
production and authoring system

4630201

Int. Security

1986

LGAS

Sec

122

On-line and off-line transaction
security system using a code
generated from a transaction

parameter and a random number

2005]) A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 289

Patent No. of
Company Year |Class | Tech. Title
Number Cites
5550984 [Matsushita 1996 | LGAS | Sec 55 Security system for preventing

unauthorized communications

between networks by translating
communications received in ip
protoco! to non-ip protocol to
remove address and routing
services information

4953080 | HP 1990 LGSS | FS 146 Object management facility for
maintaining data in a computer

system
5050090 | R.J.Reynolds |1991 |L.GSS | FS 115 Object placement method and
apparatus

5329619 | Software AG 11994 JLGSS | MW 127 Cooperative processing interface
and communication broker for

heterogeneous computing
environments

4819159 | Tolerant Sys. | 1989 LGSS | MW 120 Distributed multiprocess
transaction processing system

and method
5497463 | Bull HN Info.] 1996 [LGSS | MW 52 Ally mechanism for
Sys. interconnecting non-distributed

computing environment (DCE)
and DCE systems to operate in a
network system

5125091 | Hazox 1992 |LGSS | RTS 122 Object oriented controf of real-
time processing

Table 6 describes the various elements useful to assess technical
depth and disclosure level (H: high, M: medium, L: low), technical
breadth (B: broad, M: medium, N: narrow), and prior art (USP: US
patents, FP: foreign patents, NP: non patents). It is ordered by
increasing patent#.

290 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Table 6. Technical depth, disclosure level, claims, scope and prior art

Prior art
Patent# | #Pages | #Figs | #Block | #Flow | #Tables | Tech. | Discl, | #Claims | Tech,
diags | charts depth | level breadtn | #USP | #FP | 4NP | Total

4277837 | 14 8 3 M L 6 N 13 13
4305131 | 45 21 6 H M 49 B 21 5 26
4555775 | 19 5 2 H M 15 M 10 3 13
4558413 | 58 29 6 10 H M 6 N 1 2 |27
4591983 | 59 13 1 7 H M 70 B 7 5 12
4630201 | 11 3 2 M L 17 N 22 1 23
4649515 | 21 8 2 6 7 H M 34 B 2 4 6
4658370 | 45 11 4 H M 69 B 6 24 |30
4667290 | 33 p 1 H M 40 N 2 5 7
4769712 | 30 8 1 M L 18 N 18 18
4799156 | 57 34 2 k) M L 43 B 9 1 2 12
4809170 | 20 6 4 M L 20 N 12 1 1 14
4813013 | 27 16 1 H M 15 N 3 3
4319159 | 30 9 7 H M 6 N 8 8
4821220 | 78 19 1 H H 16 N 3 3
4853843 | 45 18 8 4 H M 18 N 7 1 8
488577 | 41 12 H M 17 N 7 7
4922432 | 26 15 4 3 1 M L 20 M 10 1 10 |21
4953080 | 438 83 5 9 H H 24 M 8 8
4992940 | 16 8 1 1 L L 12 B 4 1 5

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 291
Prior art
Patent# | #Pages | #Figs | #Block | #Flow | #Tables | Tech. | Discl. | #Claims | Tech.
diags fhaﬂs depth | level beeadin | PUSP #FP | #NP | Total

5008853 | 37 13 2 H L 20 N 16 24 40
5041992 | 45 5 5 H M 17 N 2 6 8
5050090 | 31 11 M L 44 N 2 2 4
5072412 | 51 24 4 15 1 H M 62 B 19 3 33 55
5003914 | 25 1 1 11 H H 21 N 3 6 9
5119475 | 40 28 H H 24 N 5 8 13
5125091 | 11 6 5 1 M L 9 N 19 3 22
5133075 { 15 8 2 5 M M 21 N 8 8
5136705 | 48 22 12 H H 9 N S 7 12
5151987 | 20 8 5 4 H M 29 N 1 2 3
5155847 [17 4 4 M L 32 B 12 12
5181162 | 14 4 M L 20 B 12 12
5220501 | 77 22 3 18 H M 5 B 37 2 45 84
5241671 | 40 23 22 L L 41 B 25 2 14 41
5307456 | 41 30 13 1 H M 34 B 10 24 34
5329619 | 64 23 4 35 H M 26 B 7 1 3 1n
5333266 | 48 19 7 6 H M 36 N 10 10
5339392 | 103 47 5 10 H H 46 M 11 1 10 22
5347632 | 68 11 2 1 H M 34 M 16 2 18
5406557 | 17 7 M L 16 B 5 3 1 9
5437027 | 25 7 6 1 12 H M 21 B 8 13 21

292 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Val.9:2

Prior art
Patent# | #Pages | #Figs | #Block | #Flow | #Tables | Tech. | Discl. | #Claims | Tech.
diags charts depth | level breadth H#USP | #FP [#NP | Total

5497463 | 86 4 1 1 H M 14 N 8 4 12
5499371 | 24 8 1 6 H H 30 N 6 1 7
5500929 | 18 10 1 1 L L 19 B 38 1 11 50
5524195 | 33 15 2 4 M M 64 B 14 1 3 18
5530852 § 27 13 M M 12 N 2 5 7
5550984 | 7 1 L L 13 M 26 1 27
5557518 | 118 44 12 H L 49 B 26 8 10 44
5560005 | 69 29 2 7 H M 8s N 5 12 17
5572643 | 14 8 1 L L 19 N 19 7 26

APPENDIX B: DETAILED ANALYSIS OF SELECTED SOFTWARE
PATENTS

B1. System software patents

This section analyzes in more detail some representative system
software patents from our set. For each granularity and technology, we
chose one or more representative patents for which we summarize the
invention and discuss its technical depth, disclosure level, prior art, and
technical breadth.

B1.1. Fine-grain patents

Programming language support

Patent identification: 5093914, 1992, AT&T Bell Laboratories

Patent title: Method of controlling the execution of object-oriented
programs

Number of citations, 1975-1999: 175

The patent describes a method for controlling the execution of an
object-oriented program to execute a defined action, e.g., stopping the

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 293

program, when a specified function is invoked on a specified object
during execution of the program. A breakpoint can thus be inserted at
the determined function address. The invention is useful for a
debugger, a tool that aids software development by giving a user control
over and access to a running program.

The patent is twenty-five pages long and has twenty-one claims. It
has twelve figures, of which eight are block diagrams and one a
flowchart with code skeleton. In addition, it has eleven tables that
illustrate program execution control with C++ code fragments.
Technical depth and disclosure level are high, thanks to the many
detailed code fragments. The patent refers to three previous patents
and several published research papers on object-oriented programming
debugging. The technical breadth is narrow as the patent describes a
specific technique.

Task scheduler

Patent identification: 5136705, 1992, Tektronix, Inc.

Patent titlee Method of generating instruction sequences for
controlling data flow processes

Number of citations, 1975-1999: 109

The patent describes a method to automatically schedule tasks for
changing the states of multiple-state resources that are interconnected,
such as those used by computer-controlled test and measurement
systems. The resources are modeled as data flow diagrams. The
method can produce a sequence of tasks to control the test and
measurement systems so as to assure valid data collection and protect
physical resources from abuse.

The patent is forty-eight pages long and has nine claims. It has
twenty-two figures, of which twelve are flowcharts and one a C++
program example. In addition, it has several detailed Smalltalk code
fragments in Appendices. Technical depth and disclosure level are high,
thanks to the many detailed code fragments. The patent refers to five
previous patents and several published research papers and books on
dataflow programming debugging. The technical breadth is narrow as
the patent describes a specific technique.

294 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 922

B1.2. Large-grain patents

Video application

Patent identification: 4305131, 1981, Individual

Patent title: Dialog between TV movies and human viewers

Number of citations, 1975-1999: 174

The patent describes a video amusement system by which one or
more viewers influence the course of a motion picture as if each viewer
were a participant in a real-life drama or dialog. It uses a speech-
recognition unit to recognize a few spoken words such as “yes” and
“run,” thus simulating a dialog between the screen actors and the
viewer. The system may read an optical videodisc containing
independently addressable video frames, blocks of compressed audio, or
animated cartoon graphics. Several hardware circuits are described to
control access to video information.

The patent is forty-five pages long and has forty-nine claims. It has
twenty-one figures, of which several hardware diagrams for the special
circuits and six block diagrams. Technical depth is high. Disclosure
level is medium as there are no details about the code. The patent
refers to twenty-one previous patents and several published research
papers videodisc applications. The technical breadth is broad as the
patent touches on various aspects of a video system.

GUI

Patent identification: 5339392, 1994, Individual

Patent title: Apparatus and method for creation of a user definable
video displayed document showing changes in real time data

Number of citations, 1975-1999: 109

The patent describes a method and tools for a user to compose a
custom document that shows data changes in real time. The method
makes it possible to transform a blank display of a computer into an
active document having one or more pages of user defined display
showing the changing values of data in real time. The tools enable a
user to control the “look” of the active document, possibly with script
commands. Their use is illustrated with a financial analysis GUI
application.

The patent is 103 pages long and has forty-six claims. It has forty-six
figures, of which five are block diagrams and ten are flowcharts showing
examples of menu class definition. In addition, it describes a scripting

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 295

language with its full definition and examples. Technical depth is high
but the techniques are generally simple. Disclosure level is high, thanks
to the many detailed menu description and script examples. The patent
refers to twelve previous patents and several published research papers
and books on GUI. The technical breadth is medium.

B2. Application software patents

This section analyzes in more details some representative application
software patents. For each granularity and technology, we chose one or
more representative patents. For each patent, we summarize the
invention and discuss its technical depth, disclosure level, prior art and
technical breadth.

B2.1. Fine-grain patents

File system

Patent identification: 4953080, 1990, Hewlett-Packard Corporation

Patent title: Object management facility for maintaining data in a
computer system

Number of citations, 1975-1999: 151

The patent describes an object-oriented file management system for
storing objects belonging to different classes and having different data
structures. The use of object data structures allows for the computer to
refer to an object data structure and associated access files using a tag
that is inaccessible to the user. The user refers to an object based on the
physical location of the object on the screen. Additionally, the file
management system includes a number of link data structures for
complex objects.

This patent is the longest one in our sample set, 438 pages, and
contains twenty-four claims. It has eighty-three figures, essentially to
illustrate data structures and file organizations. It also includes nine
tables to illustrate data structure contents. Technical depth is high.
However, disclosure level is medium, as there is no detailed description
of file operations. The patent refers to eight previous patents. It has
medium technical breadth as it deals with specific techniques of a file
system.

296 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Middleware

Patent identification: 5329619, 1994, Software AG

Patent title: Cooperative processing interface and communication
broker for heterogeneous computing environments

Number of citations, 1975-1999: 127

The patent describes an object-oriented middleware that supports
three modes of inter-object communication: message processing,
conversational communication, and remote procedure call. A service
broker manages service requests between clients and servers which may
reside on different hardware platforms and operating systems and may
be connected to heterogeneous computer networks. It includes
different application programming interfaces for allowing participants to
access the functionality.

This patent is sixty-four pages long and has twenty-six claims. It has
twenty-three figures, of which six are block diagrams. It also includes
twenty-five tables to define all application programming interfaces in C
language. Technical depth is high. However, disclosure level is
medium, as there is no detailed description of how the service broker
works. The patent refers to eight previous patents and to the standard
specifications of the Object Management Group. The technical breadth
is broad as the patent describes a large system.

Real-time system

Patent identification: 5125091, 1992, Hazox Corporation

Number of citations, 1975-1999: 122

The patent describes a method of controlling processing in a
computer, particularly real-time processing, using computer data
objects. Real-time or other input data received from data sources is
classified according to pre-stored control data. The control data defines
which data source provides the real-time data, how the real-time data is
to be processed, where the real-time data is to be stored, and what
reports the real-time data will be used in. The classified real-time data
becomes a computer data object with its associated control data and all
subsequent processing is performed on the computer data object.

This patent is only eleven pages long and has ten claims. It has six
figures, of which five are block diagrams and one a flowchart. Technical
depth is medium as the presentation is relatively high-level. Disclosure
level is low. The patent refers to nineteen previous patents and three

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 297

research papers. The technical breadth is narrow as the patent describes
a specific technique.

B2.2. Large-grain patents

Banking/commerce

Patent identification: 5220501, 1993, Online Resources, Ltd

Patent title: Method and system for remote delivery of retail
banking services

Number of citations, 1975-1999: 142

The patent describes a system and method for the remote
distribution of financial services, such as home banking and bill paying,
using portable terminals connected to a bank’s central computer
through a network service provider. Information exchange between the
central computer and the terminal solicits information from the terminal
user related to the requested financial services. The central computer
then transmits a message over a conventional ATM network debiting
the user’s bank account in real time, and may pay the specified payees
the specified amount electronically or in other ways as appropriate. The
terminal interface is user-friendly.

This patent is seventy-eight pages long and contains fifty-one claims.
It has twenty-two figures, of which three are block diagrams and
eighteen are flowcharts illustrating program control steps. Technical
depth is high. Disclosure level is medium. The patent refers to forty
previous patents and many technical papers on electronic fund transfer.
The technical breadth is broad as the patent describes a large system.

Patent identification: 5557518, 1996, Citibank, N.A.

Patent title: Trusted agents for open electronic commerce

Number of citations, 1996-1999: 59

The patent describes a system for open electronic commerce having
a customer trusted agent securely communicating with a first money
module, and a merchant trusted agent securely communicating with a
second money module. Both trusted agents can exchange electronic
merchandise through a secure session, while both money modules can
transfer money through another secure session.

This patent is 118 pages long and has forty-nine claims. It has forty-
four figures, of which 12 are block diagrams and thirty-nine, a high level,
are protocol commands. Technical depth is high, but disclosure level is
low considering the fact that the patent is quite broad and describes a

298 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

large system. The patent refers to thirty-three previous patents and
many technical papers.

CAD

Patent identification: 4922432, 1990, International Chip Corporation

Patent title: Knowledge based method and apparatus for designing
integrated circuits using functional specifications

Number of citations, 1975-1999: 138

The patent describes a CAD system and method for designing an
application specific integrated circuit that enables a user to define
functional architecture-independent specifications and translate them
into the detailed information needed for directly producing the
integrated circuit. The specifications of the desired integrated circuit
are defined in a flowchart format. From the flowchart, the system uses
expert system technology to generate a system controller, to select the
necessary integrated circuit hardware cells needed, and to generate data
and control paths for operation of the integrated circuit.

This patent is twenty-six pages long and has twenty claims. It
contains fifteen figures, of which four are block diagrams and three are
flowcharts. It also has one table describing micro-operators and
examples of expert system rules. Technical depth is medium.
Disclosure level is low. The patent refers to eleven previous patents and
several papers and books on VLSI design. The technical breadth is
medium.

CASE

Patent identification: 4558413, 1985, Xerox Corporation

Patent title: Software version management system

Number of citations, 1975-1999: 267

The patent describes a software version management system that
provides for automatically collecting and recompiling updated versions
of component software objects over a computer network. The source
versions of a particular component software object are represented by
models. The component software objects are periodically updated, via a
system editor, by various users at their personal computers and then
stored in designated storage means. The system supports a notification
service to help track the edited objects and alter their respective models
to the current version thereof.

This 1s the most cited patent in our sample set. This patent is fifty-
eight pages long and has six claims. It has twenty-nine figures, of which

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 299

six are block diagrams and ten are flowcharts with interfaces and code
skeletons. Technical depth is high. Disclosure level is medium. The
patent refers to only one previous patent and several papers and books
on source-code-version management. The technical breadth is narrow
as the patent describes a number of specific techniques.

Communication

Patent identification: 5347632, 1994, Prodigy Services Company

Patent title: Reception system for an interactive computer network
and method of operation

Number of citations, 1975-1999: 136

The patent describes an interactive computer network that enables a
user with a PC to display desired information, such as news, financial
and cultural information, and perform transactional services, such as
banking and shopping. User inputs are translated into PC-independent
data objects and executable code objects, which are then processed by
the network. User characteristics are monitored by the system in order
to generate and display specific advertisements to the user based on
individual usage characteristics and predetermined interests.

This patent is sixty-eight pages long and has forty-three claims. It
has eleven figures, of which two are block diagrams and one a flowchart.
It also includes examples of programs and interface layouts. Technical
depth is high. Disclosure level is medium. The patent refers to sixteen
previous patents and two books. The technical breadth is medium.

Database

Patent identification: 5181162, 1993, Eastman Kodak Company

Number of citations, 1975-1999: 198

The patent describes an object-oriented document management and
production system in which documents are represented as collections of
logical components, or objects, that may be combined and physically
mapped onto a page-by-page layout. The objects are stored, organized,
accessed, and manipulated through a database management system. At
a minimum, objects contain basic information-bearing constituents such
as text, image, voice or graphics. Objects may also contain further data
specifying appearance characteristics, relationships to other objects, and
access restrictions.

This patent is only fourteen pages long and has twenty claims. It has
four general figures, used, for example, to describe object hierarchies.
Technical depth is medium. Disclosure level is low. The patent refers

300 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

to twelve previous patents. The technical breadth is broad as it
describes an entire system.

Patent number: 5133075, 1992, Hewlett-Packard Company

Patent title: Method of monitoring changes in attribute values of
object in an object-oriented database

Number of citations, 1975-1999: 166

The patent describes a method of monitoring objects in an
interactive object-oriented database system. Any software client can
request monitoring of attributes of objects in the database. A record is
kept of update transactions initiated by a client. When the client
commits the changes, any client who has requested monitoring is
notified of any change in the value of an attribute for which monitoring
has been requested. The notification interrupts the client and invokes a
predestinated client procedure. Overhead is minimized by creating
partial view materialization paths and defining monitors ahead of time
and by localizing the monitoring.

This patent is fifteen pages long and has twenty-one claims. It has
eight figures of which two are block diagrams and two are flowcharts.
Technical depth is medium. Disclosure level is medium. The patent
refers to eight previous patents. The technical breadth is narrow as the
patent describes a specific technique.

Patent identification: 4992940, 1991, H-Renee, Inc.

Patent title: System and method for automated selection of
equipment for purchase through input of user-desired specifications

The patent describes an automated system to assist a user in locating
and purchasing goods or services sold by several vendors. The system
consists of several application programs which access a database
containing information about different products and/or services,
arranged in various categories. The system also provides the user with
an interface to interact with the database and help refining the searching
of products. Finally, after the user has selected one or more items for
immediate purchase, the system automatically transmits the order to the
appropriate vendor.

This patent is sixteen pages long and claims twelve original
contributions. It has eight figures, of which one is a block diagram and
one a flowchart. Technical depth is low so is disclosure level. The
patent refers to four previous patents and one research paper. From a
technical point of view it is relatively obvious as it is merely a
straightforward purchasing application. The technical breadth is broad
as the patent describes a large application.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 301

Patent number: 5499371, 1996, Persistence Software, Inc.

Patent title: Method and apparatus for automatic generation of
object oriented code for mapping relational data to objects

Number of citations, 1996-1999: 59

The patent describes a method to map automatically information
between an object-oriented application and a structured database, such
as a relational database. This is done by taking into account all of the
semantics of an object model, such as inheritance and relationships
among object classes, and using these semantics to generate a minimal
set of routines for each object class that manipulate the object and other
objects to which it is related or from which it inherits. By working with
the objects, the user of such applications transparently manipulates the
database without needing to know anything of its structure.

This patent is twenty-four pages long and has thirty claims. It has
eight figures, of which two are block diagrams and six are flowcharts. In
addition, it gives the entire (copyrighted) source code of the Persistence
system and the user manual in Appendices. Technical depth and
disclosure level are thus high. The patent refers to six previous patents
and a product’s user manual. The technical breadth is narrow as the
patent describes a specific technique.

GUI

Patent identification: 5008853, 1991, Xerox Corporation

Patent title: Representation of collaborative multi-user activities
relative to shared structured data objects in a networked workstation
environment

Number of citations, 1975-1999: 208

The patent describes a multi-user collaborative system in which
shared structured data objects can be concurrently accessed by different
users at different workstations connected by a network. The system
provides a “What you see is what you get” (WYSIWG) user-interface to
represent the shared structured data objects and maintains current
information relative to the shared structured objects to allow concurrent
editing.

This patent is thirty-seven pages long and has twenty claims. It has
fourteen figures, of which two are block diagrams. Technical depth is
high; in particular, concurrent support through distributed locking.
Disclosure level is low. The patent refers to 16 sixteen previous patents
and many research papers on collaborative user interfaces. The

302 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

technical breadth is narrow as the patent focuses on specific techniques
for concurrent access to objects.

Patent identification: 5119475, 1992, Schlumberger Technology
Corporation

Patent title: Object-oriented framework for menu definition

Number of citations, 1975-1999: 157

The patent describes a mechanism for specifying the behavior,
appearance, and function of menus as part of an interactive object-
oriented user interface. Menus are constructed from interchangeable
object building blocks to obtain the characteristics wanted without the
need to write code and maintaining a coherent interface. The approach
is implemented by dissecting interface menu behavior into modularized
objects.

This patent is forty pages long and has twenty-four claims. It has
twenty-eight figures, illustrating menus and window displays; eight of
these figures are code fragments in Lisp language. Technical depth and
disclosure level are high and result from the use of Lisp, a high-level
programming language. The patent refers to five previous patents and
many research papers on user interfaces. The technical breadth is
narrow as the patent focuses on a specific technique.

Patent number: 5572643, 1996, Individual

Patent title: Web browser with dynamic display of information
objects during linking

Number of citations, 1996-1999: 173

The patent describes a method for browsing the World Wide Web
using an HTML-compliant client supporting a graphical user interface
and a browser. While the client waits for a reply or as the HTML
document is being downloaded, the browser displays a “mini-web page”
with one or more different types of informational messages to the user,
e.g., advertisements, notices, messages, copyright information. Such
information is added as comments attached to the links. Such comments
are typically ignored by the browser when displaying the document.

This patent is only fourteen pages long and has nineteen claims. It
has eight figures, mainly screen displays and HTML samples, and one
flowchart. Technical depth and disclosure level are low. The idea of
embedding information in HTML comments is quite obvious, and has
been already used in SGML, thus potentially making the patent obvious.
The patent refers to nineteen previous patents and several trade press
papers. The technical breadth is narrow as the patent describes a
specific technique.

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 303

Information retrieval

Patent number: 5530852, 1996, Sun Microsystems, Inc.

Patent title: Method for extracting profiles and topics from a first file
written in a first markup language and generating files in different
markup languages containing the profiles and topics for use in accessing
data described by the profiles and topics

Number of citations, 1975-1999: 136

The patent describes an information retrieval system and method for
automatically creating hypertext documents from information using
profiles and topics, and providing that information to a user. The
method proceeds in several steps whereby information is extracted using
markup languages that describe document content.

This patent is twenty-seven pages long and has twelve claims. It has
thirteen figures, illustrating the different steps’ input/outputs in SGML
markup language. Technical depth and disclosure level are medium. A
portion of the disclosure of this patent contains material that is subject
to copyright protection and to which a claim of copyright protection has
been made. The patent refers to two previous patents and some
research papers on SGML. The technical breadth is narrow as the
patent describes a specific technique.

Knowledge base

Patent identification: 4658370, 1987, Teknowledge, Inc.

Patent title: Knowledge engineering tool

Number of citations, 1975-1999: 114

The patent describes a tool that is used for knowledge engineers for
building and interpreting a knowledge base having control knowledge,
factual knowledge, and judgmental rules. The tool has an inference
engine applying the judgmental rules according to a built-in control
procedure during a consultation with a user. The control knowledge is
encoded in an applicative and imperative language. The tool can thus
be used to build knowledge systems that can always explain their
conclusions and reasoning, and that are intelligible and modifiable.

This patent is forty-five pages long and has sixty-nine claims. It has
eleven figures, of which four are flowcharts describing the inference
engine subroutines. It also presents ten examples of control blocks and
rule programs. Technical depth is high and disclosure level is medium.
The patent refers to six previous patents and to many research papers
on expert systems. The technical breadth is broad as the patent
describes a large system.

304 MARQUETTE INTELLECTUAL PROPERTY LAW REVIEW [Vol. 9:2

Multimedia

Patent identification: 5241671, 1993, Encyclopaedia Britannica, Inc.

Patent title: Multimedia search system using a plurality of entry path
means which indicate interrelatedness of information

Number of citations, 1975-1999: 137

This patent describes a search system that retrieves multimedia
information in a flexible, user-friendly way. The search system uses a
multimedia database consisting of text, picture, audio and animated
data. The main database can be searched not only through textual data
but also through graphical data. Furthermore, the textual and graphical
entry paths are interactive and can be interrelated thus providing
flexible searching. Those entry paths include an idea search, a title
finder search, a topic tree search, a picture explorer search, a history
timeline search, a world atlas search, a researcher’s assistant search, and
a feature articles search. The patent is described with reference to an
encyclopedia, but claims that it can be used with any information that
can be stored in a database.

This patent is forty pages long and has forty-one claims. It has
twenty-three figures, of which twenty-two are flowcharts. It refers to
twenty-seven previous patents and to several technical papers on
information retrieval and CD-ROM. Technical depth is rather low as is
disclosure level. This patent was difficult to classify as multimedia
technology since it could also pertain to database or information
retrieval. However, multimedia support is the primary technology.
Furthermore, the patent is quite broad.

Security

Patent identification: 4630201, 1986, International Security Note &
Computer Corporation

Patent title: On-line and off-line transaction security system using a
code generated from a transaction parameter and a random number

Number of citations, 1975-1999: 122

The patent describes a security system for transferring electronic
checks. The system includes a central computer and a portable
transaction device (PTD) such as a smart card. Electronic checks are
generated by the central computer as a sequence of transaction numbers
_ and associated random numbers that are stored in the PTD. When the

user issues a check, the PTD generates a security code by combining the

next available random number with a transaction parameter. The

2005] A TECHNICAL CRITIQUE OF FIFTY SOFTWARE PATENTS 305

security code may be verified immediately or during the check clearing
cycle at the central computer.

This patent is only eleven pages long and has seventeen claims. It
has three figures, of which two are flowcharts. It refers to twenty-three
previous patents. Technical depth is medium. Disclosure level is low.
The originality seems low, a simple way of generating security codes for
authenticating electronic checks. The technical breadth is narrow as the
patent bears on a specific technique to generate security codes.

	A Technical Critique of Fifty Software Patents
	Repository Citation

	tmp.1305419405.pdf.LBZKi

